These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 12935219)

  • 21. Dynamics of limit-cycle oscillators subject to general noise.
    Goldobin DS; Teramae JN; Nakao H; Ermentrout GB
    Phys Rev Lett; 2010 Oct; 105(15):154101. PubMed ID: 21230907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictions of ultraharmonic oscillations in coupled arrays of limit cycle oscillators.
    Landsman AS; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036204. PubMed ID: 17025726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chaos-nonchaos phase transitions induced by external noise in ensembles of nonlinearly coupled oscillators.
    Shiino M; Yoshida K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026210. PubMed ID: 11308561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal-to-noise ratio in parametrically driven oscillators.
    Batista AA; Moreira RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061121. PubMed ID: 22304054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chaos suppression through asymmetric coupling.
    Bragard J; Vidal G; Mancini H; Mendoza C; Boccaletti S
    Chaos; 2007 Dec; 17(4):043107. PubMed ID: 18163771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of colored noise on networks of nonlinear oscillators.
    Busch H; Hütt MT; Kaiser F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021105. PubMed ID: 11497560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number.
    Leoni M; Liverpool TB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):040901. PubMed ID: 22680412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling-reentrant phase transition, complex hysteretic behavior, and efficiency optimization in coupled phase oscillators submitted to colored flashing potentials.
    Mangioni SE; Deza RR; Wio HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051106. PubMed ID: 12513466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of delay-induced oscillation death by coupling phase in coupled oscillators.
    Zou W; Lu J; Tang Y; Zhang C; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066208. PubMed ID: 22304179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stochastic switching in delay-coupled oscillators.
    D'Huys O; Jüngling T; Kinzel W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032918. PubMed ID: 25314515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning model for coupled neural oscillators.
    Nishii J
    Network; 1999 Aug; 10(3):213-26. PubMed ID: 10496473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anomalous phase synchronization in two asymmetrically coupled oscillators in the presence of noise.
    Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066216. PubMed ID: 16486049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of phase synchronization of coupled chaotic oscillators with empirical mode decomposition.
    Goska A; Krawiecki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046217. PubMed ID: 17155163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noise-induced synchronization of a large population of globally coupled nonidentical oscillators.
    Nagai KH; Kori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):065202. PubMed ID: 20866467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating the phase of synchronized oscillators.
    Revzen S; Guckenheimer JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051907. PubMed ID: 19113155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of noise on the synchronization of the stochastic Kuramoto model.
    Bag BC; Petrosyan KG; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056210. PubMed ID: 18233742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators.
    Zheng Z; Wang X; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056211. PubMed ID: 12059684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noise-induced phase locking in coupled coherence-resonance oscillators.
    Ohtaki M; Tanaka T; Miyakawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056219. PubMed ID: 15600740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geometric framework for phase synchronization in coupled noisy nonlinear systems.
    Balakrishnan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036206. PubMed ID: 16605630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.