These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12935234)

  • 1. Stochastic multiresonance due to interplay between noise and fractals.
    Matyjaśkiewicz S; Krawiecki A; Hołyst JA; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016216. PubMed ID: 12935234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noisefree stochastic multiresonance near chaotic crises.
    Krawiecki A; Matyjaśkiewicz S; Kacperski K; Hołyst JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041104. PubMed ID: 11690007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic multiresonance in a chaotic map with fractal basins of attraction.
    Matyjaśkiewicz S; Krawiecki A; Holyst JA; Kacperski K; Ebeling W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026215. PubMed ID: 11308566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic multiresonance and correlation-time-controlled stability for a harmonic oscillator with fluctuating frequency.
    Mankin R; Laas K; Laas T; Reiter E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031120. PubMed ID: 18851006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency.
    Laas K; Mankin R; Rekker A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051128. PubMed ID: 19518437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic resonance in noisy maps as dynamical threshold-crossing systems.
    Matyjaskiewicz S; Holyst JA; Krawiecki A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5134-41. PubMed ID: 11031558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic perturbations in open chaotic systems: random versus noisy maps.
    Bódai T; Altmann EG; Endler A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042902. PubMed ID: 23679484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy.
    Tanaka G; Sanjuán MA; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016219. PubMed ID: 15697710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system.
    Bashkirtseva I; Chen G; Ryashko L
    Chaos; 2012 Sep; 22(3):033104. PubMed ID: 23020443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crisis induced by an escape from a fat strange set.
    He Y; Jiang YM; Shen Y; He DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056213. PubMed ID: 15600734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-free stochastic resonance at an interior crisis.
    Jüngling T; Benner H; Stemler T; Just W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036216. PubMed ID: 18517494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Systems With Lévy Noise on Networks.
    Zhang C; Li W; Wang K
    IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1698-709. PubMed ID: 25216486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence resonance induced by colored noise near Hopf bifurcation.
    Ma J; Xiao T; Hou Z; Xin H
    Chaos; 2008 Dec; 18(4):043116. PubMed ID: 19123626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barrier crossing driven by Lévy noise: universality and the role of noise intensity.
    Chechkin AV; Sliusarenko OY; Metzler R; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041101. PubMed ID: 17500859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic multiresonance in coupled excitable FHN neurons.
    Li H; Sun X; Xiao J
    Chaos; 2018 Apr; 28(4):043113. PubMed ID: 31906634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catastrophic bifurcation from riddled to fractal basins.
    Lai YC; Andrade V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly noisy chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032914. PubMed ID: 24125332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling properties of saddle-node bifurcations on fractal basin boundaries.
    Breban R; Nusse HE; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066213. PubMed ID: 14754303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approximating chaotic saddles for delay differential equations.
    Taylor SR; Campbell SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic resonance in non-dynamical systems without response thresholds.
    Bezrukov SM; Vodyanoy I
    Nature; 1997 Jan; 385(6614):319-21. PubMed ID: 9002515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.