These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 12935336)
1. Natural selection and algorithmic design of mRNA. Cohen B; Skiena S J Comput Biol; 2003; 10(3-4):419-32. PubMed ID: 12935336 [TBL] [Abstract][Full Text] [Related]
2. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
3. Statistical evidence for conserved, local secondary structure in the coding regions of eukaryotic mRNAs and pre-mRNAs. Meyer IM; Miklós I Nucleic Acids Res; 2005; 33(19):6338-48. PubMed ID: 16275783 [TBL] [Abstract][Full Text] [Related]
4. Indications that "codon boundaries" are physico-chemically defined and that protein-folding information is contained in the redundant exon bases. Biro JC Theor Biol Med Model; 2006 Aug; 3():28. PubMed ID: 16893453 [TBL] [Abstract][Full Text] [Related]
5. An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under evolutionary pressure. Waldispühl J; Ponty Y J Comput Biol; 2011 Nov; 18(11):1465-79. PubMed ID: 22035326 [TBL] [Abstract][Full Text] [Related]
6. Evolution of the genetic code through progressive symmetry breaking. Lenstra R J Theor Biol; 2014 Apr; 347():95-108. PubMed ID: 24434741 [TBL] [Abstract][Full Text] [Related]
7. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs. Laserson U; Gan HH; Schlick T Nucleic Acids Res; 2005; 33(18):6057-69. PubMed ID: 16254081 [TBL] [Abstract][Full Text] [Related]
8. Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases. Biro JC Theor Biol Med Model; 2008 Jul; 5():14. PubMed ID: 18664268 [TBL] [Abstract][Full Text] [Related]
9. Conflicting selection pressures on synonymous codon use in yeast suggest selection on mRNA secondary structures. Stoletzki N BMC Evol Biol; 2008 Jul; 8():224. PubMed ID: 18671878 [TBL] [Abstract][Full Text] [Related]
10. RNA secondary structure design. Burghardt B; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021920. PubMed ID: 17358380 [TBL] [Abstract][Full Text] [Related]
11. A computational proposal for designing structured RNA pools for in vitro selection of RNAs. Kim N; Gan HH; Schlick T RNA; 2007 Apr; 13(4):478-92. PubMed ID: 17322501 [TBL] [Abstract][Full Text] [Related]
13. Improving the efficiency of the genetic code by varying the codon length--the perfect genetic code. Doig AJ J Theor Biol; 1997 Oct; 188(3):355-60. PubMed ID: 9344740 [TBL] [Abstract][Full Text] [Related]
14. On the approximation of optimal structures for RNA-RNA interaction. Mneimneh S IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):682-8. PubMed ID: 19875865 [TBL] [Abstract][Full Text] [Related]
15. Accelerated RNA secondary structure design using preselected sequences for helices and loops. Bellaousov S; Kayedkhordeh M; Peterson RJ; Mathews DH RNA; 2018 Nov; 24(11):1555-1567. PubMed ID: 30097542 [TBL] [Abstract][Full Text] [Related]
18. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Katz L; Burge CB Genome Res; 2003 Sep; 13(9):2042-51. PubMed ID: 12952875 [TBL] [Abstract][Full Text] [Related]
19. Widespread selection for extremely high and low levels of secondary structure in coding sequences across all domains of life. Gebert D; Jehn J; Rosenkranz D Open Biol; 2019 May; 9(5):190020. PubMed ID: 31138098 [TBL] [Abstract][Full Text] [Related]
20. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]