These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12935759)

  • 1. Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator.
    Lee GW; Lee SJ; Jurng J; Hwang J
    J Hazard Mater; 2003 Aug; 101(3):273-83. PubMed ID: 12935759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.
    Yanguo Zhang ; Qinghai Li ; Aihong Meng ; Changhe Chen
    Waste Manag Res; 2011 Mar; 29(3):294-308. PubMed ID: 20421246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.
    Tsai MY; Wu KT; Huang CC; Lee HT
    Waste Manag; 2002; 22(4):439-42. PubMed ID: 12099502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emissions investigation for a novel medical waste incinerator.
    Xie R; Li WJ; Li J; Wu BL; Yi JQ
    J Hazard Mater; 2009 Jul; 166(1):365-71. PubMed ID: 19111396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
    Yu YH; Chung J
    Environ Technol; 2015; 36(22):2903-10. PubMed ID: 26061904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.
    Lin H; Ma X
    Waste Manag; 2012 Mar; 32(3):561-7. PubMed ID: 22119515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential method for reducing emissions of polycyclic aromatic hydrocarbons from the incineration of biological sludge for the terephthalic acid manufacturing industry.
    Wang LC; Lee WJ; Tsai PJ; Chen SJ
    Environ Sci Technol; 2002 Aug; 36(15):3420-5. PubMed ID: 12188374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-fluid model simulation of an industrial moving grate waste incinerator.
    Xia Z; Shan P; Chen C; Du H; Huang J; Bai L
    Waste Manag; 2020 Mar; 104():183-191. PubMed ID: 31981819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of municipal solid waste combustion in a grate furnace.
    Frey HH; Peters B; Hunsinger H; Vehlow J
    Waste Manag; 2003; 23(8):689-701. PubMed ID: 14522187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.
    Hajizadeh Y; Onwudili JA; Williams PT
    Waste Manag; 2011 Jun; 31(6):1194-201. PubMed ID: 21334872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: effects of dynamic process control measures and emission reduction devices.
    Maguhn J; Karg E; Kettrup A; Zimmermann R
    Environ Sci Technol; 2003 Oct; 37(20):4761-70. PubMed ID: 14594389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incineration of paper sludge in a prototype vortexing fluidized bed combustor.
    Chyang CS; Liu CY; Chang YD
    J Air Waste Manag Assoc; 2001 Apr; 51(4):542-51. PubMed ID: 11321911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of mercury emissions from a municipal solid waste incinerator in Japan.
    Takaoka M; Takeda N; Fujiwara T; Kurata M; Kimura T
    J Air Waste Manag Assoc; 2002 Aug; 52(8):931-40. PubMed ID: 12184692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: a pilot plant experiment.
    Chin S; Jurng J; Lee JH; Hur JH
    Waste Manag; 2008 Dec; 28(12):2684-9. PubMed ID: 18325752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of regenerated ferric oxide for CO destruction and suppressing dioxin formation in flue gas in a pilot-scale incinerator.
    Hung WT; Lin CF
    Chemosphere; 2003 Nov; 53(7):727-35. PubMed ID: 13129512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.
    Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(5):645-55. PubMed ID: 16730435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.
    Ma P; Ma Z; Yan J; Chi Y; Ni M; Cen K
    Waste Manag Res; 2011 Oct; 29(10):1108-12. PubMed ID: 21746756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.