These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 12935948)
41. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Kanti Sen T; Khilar KC Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681 [TBL] [Abstract][Full Text] [Related]
42. Transport of Colloidal Particles in Microscopic Porous Medium Analogues with Surface Charge Heterogeneity: Experiments and the Fundamental Role of Single-Bead Deposition. Guo Y; Lou J; Cho JK; Tilton N; Chun J; Um W; Yin X; Neeves KB; Wu N Environ Sci Technol; 2020 Nov; 54(21):13651-13660. PubMed ID: 33079526 [TBL] [Abstract][Full Text] [Related]
43. Deposition of colloid particles at heterogeneous and patterned surfaces. Adamczyk Z; Nattich M; Barbasz J Adv Colloid Interface Sci; 2009; 147-148():2-17. PubMed ID: 19193360 [TBL] [Abstract][Full Text] [Related]
44. Initial colloid deposition on bare and zeolite-coated stainless steel and aluminum: influence of surface roughness. Chen G; Bedi RS; Yan YS; Walker SL Langmuir; 2010 Aug; 26(15):12605-13. PubMed ID: 20590135 [TBL] [Abstract][Full Text] [Related]
45. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration. Zhang W; Morales VL; Cakmak ME; Salvucci AE; Geohring LD; Hay AG; Parlange JY; Steenhuis TS Environ Sci Technol; 2010 Jul; 44(13):4965-72. PubMed ID: 20521810 [TBL] [Abstract][Full Text] [Related]
46. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances. Pang L; Close M; Goltz M; Noonan M; Sinton L J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354 [TBL] [Abstract][Full Text] [Related]
47. Role of low flow and backward flow zones on colloid transport in pore structures derived from real porous media. Li X; Li Z; Zhang D Environ Sci Technol; 2010 Jul; 44(13):4936-42. PubMed ID: 20540578 [TBL] [Abstract][Full Text] [Related]
48. Transport of Escherichia coli bacteria through laboratory columns of glacial-outwash sediments: estimating model parameter values based on sediment characteristics. Levy J; Sun K; Findlay RH; Farruggia FT; Porter J; Mumy KL; Tomaras J; Tomaras A J Contam Hydrol; 2007 Jan; 89(1-2):71-106. PubMed ID: 17095116 [TBL] [Abstract][Full Text] [Related]
49. Effect of particle shape on colloid retention and release in saturated porous media. Liu Q; Lazouskaya V; He Q; Jin Y J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823 [TBL] [Abstract][Full Text] [Related]
50. Model simulations of particle aggregation effect on colloid exchange between streams and streambeds. Areepitak T; Ren J Environ Sci Technol; 2011 Jul; 45(13):5614-21. PubMed ID: 21627165 [TBL] [Abstract][Full Text] [Related]
51. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging. Bridge JW; Banwart SA; Heathwaite AL Environ Sci Technol; 2006 Oct; 40(19):5930-6. PubMed ID: 17051781 [TBL] [Abstract][Full Text] [Related]
52. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media. Yoon H; Valocchi AJ; Werth CJ J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872 [TBL] [Abstract][Full Text] [Related]
53. Distance and flow effects on microsphere transport in a large gravel column. Close ME; Pang L; Flintoft MJ; Sinton LW J Environ Qual; 2006; 35(4):1204-12. PubMed ID: 16825440 [TBL] [Abstract][Full Text] [Related]
54. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale. Seetha N; Raoof A; Mohan Kumar MS; Majid Hassanizadeh S J Contam Hydrol; 2017 May; 200():1-14. PubMed ID: 28366612 [TBL] [Abstract][Full Text] [Related]
55. Reaction capacity characterization of shallow sedimentary deposits in geologically different regions of the Netherlands. Griffioen J; Klein J; van Gaans PF J Contam Hydrol; 2012 Jan; 127(1-4):30-46. PubMed ID: 21549444 [TBL] [Abstract][Full Text] [Related]
56. Experimental analysis of colloid capture by a cylindrical collector in laminar overland flow. Wu L; Gao B; Muñoz-Carpena R Environ Sci Technol; 2011 Sep; 45(18):7777-84. PubMed ID: 21809854 [TBL] [Abstract][Full Text] [Related]
57. Mobilization of natural colloids from an iron oxide-coated sand aquifer: effect of pH and ionic strength. Bunn RA; Magelky RD; Ryan JN; Elimelech M Environ Sci Technol; 2002 Feb; 36(3):314-22. PubMed ID: 11871543 [TBL] [Abstract][Full Text] [Related]
58. Application of the extended RSA models in studies of particle deposition at partially covered surfaces. Weroński P Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783 [TBL] [Abstract][Full Text] [Related]
59. Transport and retention of a bacteriophage and microspheres in saturated, angular porous media: effects of ionic strength and grain size. Knappett PS; Emelko MB; Zhuang J; McKay LD Water Res; 2008 Oct; 42(16):4368-78. PubMed ID: 18760817 [TBL] [Abstract][Full Text] [Related]
60. Transport of arsenic loaded by ferric humate colloid in saturated porous media. Yao Y; Mi N; He C; Yin L; Zhou D; Zhang Y; Sun H; Yang S; Li S; He H Chemosphere; 2020 Feb; 240():124987. PubMed ID: 31726603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]