These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Amplification of EMSY, a novel oncogene on 11q13, in high grade ovarian surface epithelial carcinomas. Brown LA; Irving J; Parker R; Kim H; Press JZ; Longacre TA; Chia S; Magliocco A; Makretsov N; Gilks B; Pollack J; Huntsman D Gynecol Oncol; 2006 Feb; 100(2):264-70. PubMed ID: 16236351 [TBL] [Abstract][Full Text] [Related]
4. Array-based comparative genomic hybridization analysis identified cyclin D1 as a target oncogene at 11q13.3 in nasopharyngeal carcinoma. Hui AB; Or YY; Takano H; Tsang RK; To KF; Guan XY; Sham JS; Hung KW; Lam CN; van Hasselt CA; Kuo WL; Gray JW; Huang DP; Lo KW Cancer Res; 2005 Sep; 65(18):8125-33. PubMed ID: 16166286 [TBL] [Abstract][Full Text] [Related]
5. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Redon R; Muller D; Caulee K; Wanherdrick K; Abecassis J; du Manoir S Cancer Res; 2001 May; 61(10):4122-9. PubMed ID: 11358835 [TBL] [Abstract][Full Text] [Related]
7. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. Kloth JN; Oosting J; van Wezel T; Szuhai K; Knijnenburg J; Gorter A; Kenter GG; Fleuren GJ; Jordanova ES BMC Genomics; 2007 Feb; 8():53. PubMed ID: 17311676 [TBL] [Abstract][Full Text] [Related]
8. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Karlsson E; Waltersson MA; Bostner J; Pérez-Tenorio G; Olsson B; Hallbeck AL; Stål O Genes Chromosomes Cancer; 2011 Oct; 50(10):775-87. PubMed ID: 21748818 [TBL] [Abstract][Full Text] [Related]
9. Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Holzmann K; Kohlhammer H; Schwaenen C; Wessendorf S; Kestler HA; Schwoerer A; Rau B; Radlwimmer B; Döhner H; Lichter P; Gress T; Bentz M Cancer Res; 2004 Jul; 64(13):4428-33. PubMed ID: 15231651 [TBL] [Abstract][Full Text] [Related]
10. Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Sonoda G; Palazzo J; du Manoir S; Godwin AK; Feder M; Yakushiji M; Testa JR Genes Chromosomes Cancer; 1997 Dec; 20(4):320-8. PubMed ID: 9408747 [TBL] [Abstract][Full Text] [Related]
11. Comparative genomic hybridization detects novel deletions and amplifications in head and neck squamous cell carcinomas. Speicher MR; Howe C; Crotty P; du Manoir S; Costa J; Ward DC Cancer Res; 1995 Mar; 55(5):1010-3. PubMed ID: 7866983 [TBL] [Abstract][Full Text] [Related]
12. Recurrent coamplification of cytoskeleton-associated genes EMS1 and SHANK2 with CCND1 in oral squamous cell carcinoma. Freier K; Sticht C; Hofele C; Flechtenmacher C; Stange D; Puccio L; Toedt G; Radlwimmer B; Lichter P; Joos S Genes Chromosomes Cancer; 2006 Feb; 45(2):118-25. PubMed ID: 16235239 [TBL] [Abstract][Full Text] [Related]
13. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Yao J; Weremowicz S; Feng B; Gentleman RC; Marks JR; Gelman R; Brennan C; Polyak K Cancer Res; 2006 Apr; 66(8):4065-78. PubMed ID: 16618726 [TBL] [Abstract][Full Text] [Related]
14. A consistent pattern of RIN1 rearrangements in oral squamous cell carcinoma cell lines supports a breakage-fusion-bridge cycle model for 11q13 amplification. Shuster MI; Han L; Le Beau MM; Davis E; Sawicki M; Lese CM; Park NH; Colicelli J; Gollin SM Genes Chromosomes Cancer; 2000 Jun; 28(2):153-63. PubMed ID: 10825000 [TBL] [Abstract][Full Text] [Related]
15. Detection of chromosomal alterations in bladder transitional cell carcinomas from Northern China by comparative genomic hybridization. Qin SL; Chen XJ; Xu X; Shou JZ; Bi XG; Ji L; Han YL; Cai Y; Wei F; Ma JH; Wu M; Zhan QM; Wang MR Cancer Lett; 2006 Jul; 238(2):230-9. PubMed ID: 16125302 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive genome and transcriptome analysis of the 11q13 amplicon in human oral cancer and synteny to the 7F5 amplicon in murine oral carcinoma. Huang X; Godfrey TE; Gooding WE; McCarty KS; Gollin SM Genes Chromosomes Cancer; 2006 Nov; 45(11):1058-69. PubMed ID: 16906560 [TBL] [Abstract][Full Text] [Related]
17. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Mahlamäki EH; Bärlund M; Tanner M; Gorunova L; Höglund M; Karhu R; Kallioniemi A Genes Chromosomes Cancer; 2002 Dec; 35(4):353-8. PubMed ID: 12378529 [TBL] [Abstract][Full Text] [Related]
18. Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer. Lundgren K; Holm K; Nordenskjöld B; Borg A; Landberg G Breast Cancer Res; 2008; 10(5):R81. PubMed ID: 18823530 [TBL] [Abstract][Full Text] [Related]
19. Gene amplification and overexpression of protein phosphatase 1alpha in oral squamous cell carcinoma cell lines. Hsu LC; Huang X; Seasholtz S; Potter DM; Gollin SM Oncogene; 2006 Sep; 25(40):5517-26. PubMed ID: 16619035 [TBL] [Abstract][Full Text] [Related]