These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12937988)

  • 1. Whole-cell recording of intracellular pH with silanized and oiled patch-type single or double-barreled microelectrodes.
    Thomas RC; Pagnotta SE; Nistri A
    Pflugers Arch; 2003 Nov; 447(2):259-65. PubMed ID: 12937988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Measurement of Intracellular pH and K+ or NO3- in Barley Root Cells Using Triple-Barreled, Ion-Selective Microelectrodes.
    Walker DJ; Smith SJ; Miller AJ
    Plant Physiol; 1995 Jun; 108(2):743-751. PubMed ID: 12228506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) and pH-sensitive microelectrodes in snail neurones.
    Willoughby D; Thomas RC; Schwiening CJ
    Pflugers Arch; 1998 Jul; 436(4):615-22. PubMed ID: 9683736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel resin-filled ion-sensitive micro-electrode suitable for intracellular measurements in isolated cardiac myocytes.
    Rodrigo GC; Chapman RA
    Pflugers Arch; 1990 Apr; 416(1-2):196-200. PubMed ID: 2352833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular acidification at the surface of depolarized voltage-clamped snail neurones detected with eccentric combination pH microelectrodes.
    Thomas RC
    Can J Physiol Pharmacol; 1987 May; 65(5):1001-5. PubMed ID: 3621027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton channels in snail neurons studied with surface pH glass microelectrodes.
    Thomas RC
    Ciba Found Symp; 1988; 139():168-83. PubMed ID: 2462479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording.
    Priel A; Gil Z; Moy VT; Magleby KL; Silberberg SD
    Biophys J; 2007 Jun; 92(11):3893-900. PubMed ID: 17369408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode.
    Thomas RC
    J Physiol; 1974 Apr; 238(1):159-80. PubMed ID: 4838803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-unit pH-sensitive double-barreled microelectrodes for extracellular use.
    Javaheri S; De Hemptinne A; Leusen I
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):907-12. PubMed ID: 6490474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for making ion-selective microelectrodes suitable for intracellular recording in vertebrate cells.
    Borrelli MJ; Carlini WG; Dewey WC; Ransom BR
    J Neurosci Methods; 1985; 15(2):141-54. PubMed ID: 4079459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of injecting calcium-buffer solution on [Ca2+]i in voltage-clamped snail neurons.
    Kennedy HJ; Thomas RC
    Biophys J; 1996 May; 70(5):2120-30. PubMed ID: 9172736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New double-barreled, ion-sensitive microelectrodes for measuring intracellular Cl- activities in rabbit renal collecting ducts.
    Kondo Y; Igarashi Y; Abe K; Tada K
    Tohoku J Exp Med; 1993 Jan; 169(1):51-8. PubMed ID: 8211969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes.
    Deveau JS; Lindinger MI; Grodzinski B
    Biol Proced Online; 2005; 7():31-40. PubMed ID: 16136222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF; Destexhe A; Bal T
    J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.
    Pearce TM; Wilson JA; Oakes SG; Chiu SY; Williams JC
    Lab Chip; 2005 Jan; 5(1):97-101. PubMed ID: 15616746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs).
    Angle MR; Schaefer AT
    PLoS One; 2012; 7(8):e43194. PubMed ID: 22905231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic and static calcium gradients inside large snail (Helix aspersa) neurones detected with calcium-sensitive microelectrodes.
    Thomas RC; Postma M
    Cell Calcium; 2007 Apr; 41(4):365-78. PubMed ID: 16962659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH microelectrode: modified Thomas recessed-tip configuration.
    Pucacco LR; Corona SK; Jacobson HR; Carter NW
    Anal Biochem; 1986 Mar; 153(2):251-61. PubMed ID: 3706708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High quality ion channel analysis on a chip with the NPC technology.
    Brüggemann A; George M; Klau M; Beckler M; Steindl J; Behrends JC; Fertig N
    Assay Drug Dev Technol; 2003 Oct; 1(5):665-73. PubMed ID: 15090239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip size of ion-exchanger based K+-selective microelectrodes. I. Effects on selectivity.
    Carlini WG; Ransom BR
    Can J Physiol Pharmacol; 1987 May; 65(5):889-93. PubMed ID: 3621051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.