BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12938878)

  • 1. PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval.
    Zhang Z; Mazzotti M; Morbidelli M
    J Chromatogr A; 2003 Jul; 1006(1-2):87-99. PubMed ID: 12938878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal performance comparison of the simulated moving bed process variants based on the modulation of the length of zones and the feed concentration.
    Calderón Supelano R; Barreto AG; Secchi AR
    J Chromatogr A; 2021 Aug; 1651():462280. PubMed ID: 34111677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step optimization strategy in the simulated moving bed process with asynchronous movement of ports: A VariCol case study.
    Calderón Supelano R; Barreto AG; Andrade Neto AS; Secchi AR
    J Chromatogr A; 2020 Dec; 1634():461672. PubMed ID: 33220588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal operating mode for enantioseparation of SB-553261 racemate based on simulated moving bed technology.
    Wongso F; Hidajat K; Ray AK
    Biotechnol Bioeng; 2004 Sep; 87(6):704-22. PubMed ID: 15329929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of simulated moving bed and Varicol processes.
    Toumi A; Engell S; Ludemann-Hombourger O; Nicoud RM; Bailly M
    J Chromatogr A; 2003 Jul; 1006(1-2):15-31. PubMed ID: 12938873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiment and modeling for the separation of guaifenesin enantiomers using simulated moving bed and Varicol units.
    Gong R; Lin X; Li P; Yu J; Rodrigues AE
    J Chromatogr A; 2014 Oct; 1363():242-9. PubMed ID: 25047823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design and experimental validation of synchronous, asynchronous and flow-modulated, simulated moving-bed processes using a single-column setup.
    Rodrigues RC; Araújo JM; Mota JP
    J Chromatogr A; 2007 Aug; 1162(1):14-23. PubMed ID: 17306808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-port operation in three-zone simulated moving bed chromatography.
    Kim KM; Song JY; Lee CH
    J Chromatogr A; 2014 May; 1340():79-89. PubMed ID: 24661870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioseparation of racemic aminoglutethimide using asynchronous simulated moving bed chromatography.
    Lin X; Gong R; Li J; Li P; Yu J; Rodrigues AE
    J Chromatogr A; 2016 Oct; 1467():347-355. PubMed ID: 27544751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiobjective optimization of simulated moving bed and Varicol processes using a genetic algorithm.
    Zhang Z; Mazzotti M; Morbidelli M
    J Chromatogr A; 2003 Mar; 989(1):95-108. PubMed ID: 12641286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of simulated moving bed and Varicol processes for preparative separations with a low number of columns.
    Pais LS; Rodrigues AE
    J Chromatogr A; 2003 Jul; 1006(1-2):33-44. PubMed ID: 12938874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal economic design and operation of single- and multi-column chromatographic processes.
    Chan S; Titchener-Hooker N; Sørensen E
    Biotechnol Prog; 2008; 24(2):389-401. PubMed ID: 18386918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental implementation of identification-based optimizing control of a simulated moving bed process.
    Song IH; Amanullah M; Erdem G; Mazzotti M; Rhee HK
    J Chromatogr A; 2006 Apr; 1113(1-2):60-73. PubMed ID: 16480993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the optimal performance of ModiCon and ModiCon+VariCol simulated moving bed variants.
    Supelano RC; Barreto AG; Secchi AR
    J Chromatogr A; 2022 Jul; 1675():463182. PubMed ID: 35675732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated moving bed chromatography for the separation of enantiomers.
    Rajendran A; Paredes G; Mazzotti M
    J Chromatogr A; 2009 Jan; 1216(4):709-38. PubMed ID: 19004446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the performances of a tandem simulated moving bed chromatography by controlling the yield level of a key product of the first simulated moving bed unit.
    Mun S; Wang NL
    J Chromatogr A; 2017 Mar; 1488():104-112. PubMed ID: 28057330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous recovery of valine in a model mixture of amino acids and salt from Corynebacterium bacteria fermentation using a simulated moving bed chromatography.
    Park C; Nam HG; Jo SH; Wang NH; Mun S
    J Chromatogr A; 2016 Feb; 1435():39-53. PubMed ID: 26830632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous modeling and optimization of nonlinear simulated moving bed chromatography by the prediction-correction method.
    Bentley J; Sloan C; Kawajiri Y
    J Chromatogr A; 2013 Mar; 1280():51-63. PubMed ID: 23380364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three column intermittent simulated moving bed chromatography: 1. Process description and comparative assessment.
    Jermann S; Mazzotti M
    J Chromatogr A; 2014 Sep; 1361():125-38. PubMed ID: 25169723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography.
    Kim KM; Lee CH
    J Chromatogr A; 2013 Oct; 1311():79-89. PubMed ID: 24007684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.