These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12938878)

  • 21. Optimization of simulated moving bed chromatography with fractionation and feedback: part I. Fractionation of one outlet.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5337-48. PubMed ID: 20619840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relay simulated moving bed chromatography: concept and design criteria.
    Silva RJ; Rodrigues RC; Mota JP
    J Chromatogr A; 2012 Oct; 1260():132-42. PubMed ID: 22980644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones.
    Santos da Silva FV; Seidel-Morgenstern A
    J Chromatogr A; 2016 Jul; 1456():123-36. PubMed ID: 27328885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of adsorbent particle size on the relative merits of a non-triangular and a triangular separation region in the optimal design of a three-zone simulated moving bed chromatography for binary separation with linear isotherms.
    Mun S
    J Chromatogr A; 2016 Jun; 1452():36-46. PubMed ID: 27208988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-fraction and three-fraction continuous simulated moving bed separation of nucleosides.
    Abel S; Bäbler MU; Arpagaus C; Mazzotti M; Stadler J
    J Chromatogr A; 2004 Jul; 1043(2):201-10. PubMed ID: 15330093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of a hybrid chromatography-crystallization process for the separation of Tröger's base enantiomers.
    Amanullah M; Mazzotti M
    J Chromatogr A; 2006 Feb; 1107(1-2):36-45. PubMed ID: 16289122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-objective optimization for the economic production of d-psicose using simulated moving bed chromatography.
    Wagner N; Håkansson E; Wahler S; Panke S; Bechtold M
    J Chromatogr A; 2015 Jun; 1398():47-56. PubMed ID: 25943832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced performance of a three-zone simulated moving bed chromatography for separation of succinic acid and lactic acid by simultaneous use of port-location rearrangement and partial-feeding.
    Mun S
    J Chromatogr A; 2014 Jul; 1350():72-82. PubMed ID: 24881495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of production rate, productivity, and product concentration for a simulated moving bed process aimed atfucose separation using standing-wave-design and genetic algorithm.
    Mun S
    J Chromatogr A; 2018 Nov; 1575():113-121. PubMed ID: 30287060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving performance of simulated moving bed chromatography by fractionation and feed-back of outlet streams.
    Kessler LC; Seidel-Morgenstern A
    J Chromatogr A; 2008 Oct; 1207(1-2):55-71. PubMed ID: 18768183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.
    Wu J; Peng Q; Arlt W; Minceva M
    J Chromatogr A; 2009 Dec; 1216(50):8793-805. PubMed ID: 19344909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of pseudo-simulated moving bed process with multi-objective optimization for the separation of a ternary mixture: linear isotherms.
    Lee JW; Wankat PC
    J Chromatogr A; 2010 May; 1217(20):3418-26. PubMed ID: 20363474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of a malfunctional column on conventional and FeedCol-simulated moving bed chromatography performance.
    Song JY; Oh D; Lee CH
    J Chromatogr A; 2015 Jul; 1403():104-17. PubMed ID: 26037316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of simulated moving bed and column chromatography for a plasmid DNA purification step and for a chiral separation.
    Paredes G; Mazzotti M
    J Chromatogr A; 2007 Feb; 1142(1):56-68. PubMed ID: 17188694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of simulated moving bed chromatography with fractionation and feedback: part II. Fractionation of both outlets.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5349-57. PubMed ID: 20619841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-column intermittent simulated moving bed chromatography: 2. Experimental implementation for the separation of Tröger's Base.
    Jermann S; Alberti A; Mazzotti M
    J Chromatogr A; 2014 Oct; 1364():107-16. PubMed ID: 25239701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power partial-discard strategy to obtain improved performance for simulated moving bed chromatography.
    Chung JW; Kim KM; Yoon TU; Kim SI; Jung TS; Han SS; Bae YS
    J Chromatogr A; 2017 Dec; 1529():72-80. PubMed ID: 29132824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Partial port-closing strategy for obtaining high throughput or high purities in a four-zone simulated moving bed chromatography for binary separation.
    Mun S
    J Chromatogr A; 2010 Oct; 1217(42):6522-30. PubMed ID: 20837353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantiomers separation by simulated moving bed chromatography. Non-instantaneous equilibrium at the solid-fluid interface.
    Azevedo DC; Pais LS; Rodrigues AE
    J Chromatogr A; 1999 Dec; 865(1-2):187-200. PubMed ID: 10674941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal design and experimental validation of a simulated moving bed chromatography for continuous recovery of formic acid in a model mixture of three organic acids from Actinobacillus bacteria fermentation.
    Park C; Nam HG; Lee KB; Mun S
    J Chromatogr A; 2014 Oct; 1365():106-14. PubMed ID: 25240652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.