These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 12939022)
1. Reduction of microemboli count in the priming fluid of cardiopulmonary bypass circuits. Merkle F; Boettcher W; Schulz F; Kopitz M; Koster A; Hennig E; Hetzer R J Extra Corpor Technol; 2003 Jun; 35(2):133-8. PubMed ID: 12939022 [TBL] [Abstract][Full Text] [Related]
2. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique? Merkle F; Böttcher W; Hetzer R Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770 [TBL] [Abstract][Full Text] [Related]
3. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs. Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448 [TBL] [Abstract][Full Text] [Related]
5. Does CO(2) flushing of the empty CPB circuit decrease the number of gaseous emboli in the prime? Nyman J; Rundby C; Svenarud P; van der Linden J Perfusion; 2009 Jul; 24(4):249-55. PubMed ID: 19864467 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass. Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759 [TBL] [Abstract][Full Text] [Related]
7. Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass. Husebråten IM; Fiane AE; Ringdal MIL; Thiara APS Perfusion; 2018 Jan; 33(1):30-35. PubMed ID: 28784030 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
9. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system. Miller A; Wang S; Myers JL; Undar A ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742 [TBL] [Abstract][Full Text] [Related]
10. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Taylor RL; Borger MA; Weisel RD; Fedorko L; Feindel CM Ann Thorac Surg; 1999 Jul; 68(1):89-93. PubMed ID: 10421121 [TBL] [Abstract][Full Text] [Related]
11. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures. Dhami R; Wang S; Kunselman AR; Ündar A Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
13. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators. Jabur GN; Sidhu K; Willcox TW; Mitchell SJ Perfusion; 2016 Jul; 31(5):409-17. PubMed ID: 26643883 [TBL] [Abstract][Full Text] [Related]
14. Brain emboli distribution and differentiation during cardiopulmonary bypass. Zanatta P; Forti A; Minniti G; Comin A; Mazzarolo AP; Chilufya M; Baldanzi F; Bosco E; Sorbara C; Polesel E J Cardiothorac Vasc Anesth; 2013 Oct; 27(5):865-75. PubMed ID: 23706643 [TBL] [Abstract][Full Text] [Related]
16. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles. Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633 [TBL] [Abstract][Full Text] [Related]
17. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model. Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745 [TBL] [Abstract][Full Text] [Related]
18. Clinical evaluation of new generation oxygenators with integrated arterial line filters for cardiopulmonary bypass. Onorati F; Santini F; Raffin F; Menon T; Graziani MS; Chiominto B; Milano A; Faggian G; Mazzucco A Artif Organs; 2012 Oct; 36(10):875-85. PubMed ID: 22803968 [TBL] [Abstract][Full Text] [Related]
19. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass. Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342 [TBL] [Abstract][Full Text] [Related]
20. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. De Somer F J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]