BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12939022)

  • 1. Reduction of microemboli count in the priming fluid of cardiopulmonary bypass circuits.
    Merkle F; Boettcher W; Schulz F; Kopitz M; Koster A; Hennig E; Hetzer R
    J Extra Corpor Technol; 2003 Jun; 35(2):133-8. PubMed ID: 12939022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique?
    Merkle F; Böttcher W; Hetzer R
    Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs.
    Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS
    Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does CO(2) flushing of the empty CPB circuit decrease the number of gaseous emboli in the prime?
    Nyman J; Rundby C; Svenarud P; van der Linden J
    Perfusion; 2009 Jul; 24(4):249-55. PubMed ID: 19864467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass.
    Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A
    Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass.
    Husebråten IM; Fiane AE; Ringdal MIL; Thiara APS
    Perfusion; 2018 Jan; 33(1):30-35. PubMed ID: 28784030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.
    Qiu F; Guan Y; Su X; Kunselman A; Undar A
    Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions.
    Taylor RL; Borger MA; Weisel RD; Fedorko L; Feindel CM
    Ann Thorac Surg; 1999 Jul; 68(1):89-93. PubMed ID: 10421121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures.
    Dhami R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators.
    Jabur GN; Sidhu K; Willcox TW; Mitchell SJ
    Perfusion; 2016 Jul; 31(5):409-17. PubMed ID: 26643883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain emboli distribution and differentiation during cardiopulmonary bypass.
    Zanatta P; Forti A; Minniti G; Comin A; Mazzarolo AP; Chilufya M; Baldanzi F; Bosco E; Sorbara C; Polesel E
    J Cardiothorac Vasc Anesth; 2013 Oct; 27(5):865-75. PubMed ID: 23706643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter.
    Jabur GN; Willcox TW; Zahidani SH; Sidhu K; Mitchell SJ
    Perfusion; 2014 May; 29(3):219-25. PubMed ID: 24009263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles.
    Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R
    Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model.
    Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A
    ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of new generation oxygenators with integrated arterial line filters for cardiopulmonary bypass.
    Onorati F; Santini F; Raffin F; Menon T; Graziani MS; Chiominto B; Milano A; Faggian G; Mazzucco A
    Artif Organs; 2012 Oct; 36(10):875-85. PubMed ID: 22803968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass.
    Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A
    Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.