These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12939024)

  • 1. Quantification of the effect of altering hematocrit and temperature on blood viscosity.
    Stammers AH; Vang SN; Mejak BL; Rauch ED
    J Extra Corpor Technol; 2003 Jun; 35(2):143-51. PubMed ID: 12939024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardioplegia flow dynamics in an in vitro model.
    Taft KJ; Stammers AH; Jones CC; Dickes MS; Pierce ML; Beck DJ
    Perfusion; 1999 Sep; 14(5):341-9. PubMed ID: 10499650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher hematocrit improves liver blood flow and metabolism during cardiopulmonary bypass in piglets.
    Nollert G; Sperling J; Sakamoto T; Jaeger BR; Jonas RA
    Thorac Cardiovasc Surg; 2001 Aug; 49(4):226-30. PubMed ID: 11505319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Blood Viscosity Estimation Method Based on Pressure-Flow Characteristics of an Oxygenator During Cardiopulmonary Bypass.
    Okahara S; Soh Z; Miyamoto S; Takahashi H; Itoh H; Takahashi S; Sueda T; Tsuji T
    Artif Organs; 2017 Mar; 41(3):262-266. PubMed ID: 27782314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity.
    Sevick EM; Jain RK
    Cancer Res; 1989 Jul; 49(13):3513-9. PubMed ID: 2731173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of temperature and haematocrit on the relationships between blood flow velocity and blood flow in a vessel of fixed diameter.
    Paut O; Bissonnette B
    Br J Anaesth; 2002 Feb; 88(2):277-9. PubMed ID: 11878660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of priming solutions used in cardiopulmonary bypass on blood viscosity in hypothermic conditions.
    Manduz S; Sapmaz I; Sanri US; Karahan O; Bascil H; Dogan K
    ASAIO J; 2008; 54(3):275-7. PubMed ID: 18496277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes of blood viscosity in patients undergoing cardiac surgery during cardiopulmonary bypass].
    Ling IS; Wang CF; Lee CL; Liu CG; Lee YT; Wu JL
    Ma Zui Xue Za Zhi; 1992 Sep; 30(3):153-7. PubMed ID: 1302787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits.
    Wang S; Rosenthal T; Kunselman AR; Ündar A
    Artif Organs; 2015 Jan; 39(1):43-52. PubMed ID: 25626579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical treatise: arterial pressure during aortic surgery.
    Ridgway T; Al-Rawi O; Palmer K; Pullan M; Poullis M
    J Extra Corpor Technol; 2012 Sep; 44(3):151-4. PubMed ID: 23198396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood viscosity monitoring during cardiopulmonary bypass based on pressure-flow characteristics of a Newtonian fluid.
    Okahara S; Zu Soh ; Takahashi S; Sueda T; Tsuji T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2331-2334. PubMed ID: 28268793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in arterial pressure, viscosity and resistance during cardiopulmonary bypass.
    Gordon RJ; Ravin M; Rawitscher RE; Daicoff GR
    J Thorac Cardiovasc Surg; 1975 Apr; 69(4):552-61. PubMed ID: 1117744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the Fluid Viscosity in a Mock Circulation.
    Boës S; Ochsner G; Amacher R; Petrou A; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Jan; 42(1):68-77. PubMed ID: 28718516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Blood Viscosity Monitoring System for Cardiopulmonary Bypass Applications.
    Okahara S; Soh Z; Miyamoto S; Takahashi H; Takahashi S; Sueda T; Tsuji T
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1503-1512. PubMed ID: 27662668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hematological and blood viscosity changes in tail-suspended rats.
    Saunders DK; Roberts AC; Aldrich KJ; Cuthbertson B
    Aviat Space Environ Med; 2002 Jul; 73(7):647-53. PubMed ID: 12137100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of crystalloid and blood cardioplegic solutions on myocardial cooling during myocardial revascularization.
    Landymore RW; Kinley CE
    Can J Surg; 1984 May; 27(3):257-9. PubMed ID: 6609757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity.
    Eckmann DM; Bowers S; Stecker M; Cheung AT
    Anesth Analg; 2000 Sep; 91(3):539-45. PubMed ID: 10960372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of temperature and hematocrit level of oxygenated cardioplegic solutions on myocardial preservation.
    Rousou JA; Engelman RM; Breyer RH; Otani H; Lemeshow S; Das DK
    J Thorac Cardiovasc Surg; 1988 Apr; 95(4):625-30. PubMed ID: 3352296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemorheology and renal function during cardiopulmonary bypass in infants.
    Dittrich S; Priesemann M; Fischer T; Boettcher W; Müller C; Dähnert I; Ewert P; Alexi-Meskishvili V; Hetzer R; Lange PE
    Cardiol Young; 2001 Sep; 11(5):491-7. PubMed ID: 11727903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature control using a heat exchanger of a cardioplegic system in cardiopulmonary bypass model for rats.
    Kim WG; Choi SH; Kim JH
    Artif Organs; 2008 Dec; 32(12):993-8. PubMed ID: 19133031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.