BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 12939142)

  • 1. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat.
    Ritter H; Koch-Nolte F; Marquez VE; Schulz GE
    Biochemistry; 2003 Sep; 42(34):10155-62. PubMed ID: 12939142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE; Eisenberg D
    Biochemistry; 1996 Jan; 35(4):1137-49. PubMed ID: 8573568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase.
    Xiao JF; Li ZS; Sun CC
    Bioorg Med Chem; 2004 May; 12(9):2035-41. PubMed ID: 15080907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities.
    Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K
    J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat RT6.2 and mouse Rt6 locus 1 are NAD+: arginine ADP ribosyltransferases with auto-ADP ribosylation activity.
    Rigby MR; Bortell R; Stevens LA; Moss J; Kanaitsuka T; Shigeta H; Mordes JP; Greiner DL; Rossini AA
    J Immunol; 1996 Jun; 156(11):4259-65. PubMed ID: 8666796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex.
    Han S; Craig JA; Putnam CD; Carozzi NB; Tainer JA
    Nat Struct Biol; 1999 Oct; 6(10):932-6. PubMed ID: 10504727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.
    Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J
    J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the coenzyme and substrate binding events of CDP-D-glucose 4,6-dehydratase: mechanistic implications.
    He X; Thorson JS; Liu HW
    Biochemistry; 1996 Apr; 35(15):4721-31. PubMed ID: 8664262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the Clostridium limosum C3 exoenzyme.
    Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K
    FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells.
    Stilla A; Di Paola S; Dani N; Krebs C; Arrizza A; Corda D; Haag F; Koch-Nolte F; Di Girolamo M
    Eur J Cell Biol; 2011 Aug; 90(8):665-77. PubMed ID: 21616557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the catalytic signature of Scabin toxin, a DNA-targeting ADP-ribosyltransferase.
    Lyons B; Lugo MR; Carlin S; Lidster T; Merrill AR
    Biochem J; 2018 Jan; 475(1):225-245. PubMed ID: 29208763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ART2, a T cell surface mono-ADP-ribosyltransferase, generates extracellular poly(ADP-ribose).
    Morrison AR; Moss J; Stevens LA; Evans JE; Farrell C; Merithew E; Lambright DG; Greiner DL; Mordes JP; Rossini AA; Bortell R
    J Biol Chem; 2006 Nov; 281(44):33363-72. PubMed ID: 16931513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site.
    Bewley MC; Davis CA; Marohnic CC; Taormina D; Barber MJ
    Biochemistry; 2003 Nov; 42(45):13145-51. PubMed ID: 14609324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of autoinhibition and activation of the DNA-targeting ADP-ribosyltransferase pierisin-1.
    Oda T; Hirabayashi H; Shikauchi G; Takamura R; Hiraga K; Minami H; Hashimoto H; Yamamoto M; Wakabayashi K; Shimizu T; Sato M
    J Biol Chem; 2017 Sep; 292(37):15445-15455. PubMed ID: 28765284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization.
    Wilde C; Vogelsgesang M; Aktories K
    Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.
    Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E
    FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.