These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 12939142)
1. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat. Ritter H; Koch-Nolte F; Marquez VE; Schulz GE Biochemistry; 2003 Sep; 42(34):10155-62. PubMed ID: 12939142 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
3. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Vogelsgesang M; Aktories K Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778 [TBL] [Abstract][Full Text] [Related]
4. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Du J; Jiang H; Lin H Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Bell CE; Eisenberg D Biochemistry; 1996 Jan; 35(4):1137-49. PubMed ID: 8573568 [TBL] [Abstract][Full Text] [Related]
6. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase. Xiao JF; Li ZS; Sun CC Bioorg Med Chem; 2004 May; 12(9):2035-41. PubMed ID: 15080907 [TBL] [Abstract][Full Text] [Related]
7. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528 [TBL] [Abstract][Full Text] [Related]
8. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. de Souza RF; Aravind L Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070 [TBL] [Abstract][Full Text] [Related]
9. Rat RT6.2 and mouse Rt6 locus 1 are NAD+: arginine ADP ribosyltransferases with auto-ADP ribosylation activity. Rigby MR; Bortell R; Stevens LA; Moss J; Kanaitsuka T; Shigeta H; Mordes JP; Greiner DL; Rossini AA J Immunol; 1996 Jun; 156(11):4259-65. PubMed ID: 8666796 [TBL] [Abstract][Full Text] [Related]
10. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Han S; Craig JA; Putnam CD; Carozzi NB; Tainer JA Nat Struct Biol; 1999 Oct; 6(10):932-6. PubMed ID: 10504727 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755 [TBL] [Abstract][Full Text] [Related]
12. Probing the coenzyme and substrate binding events of CDP-D-glucose 4,6-dehydratase: mechanistic implications. He X; Thorson JS; Liu HW Biochemistry; 1996 Apr; 35(15):4721-31. PubMed ID: 8664262 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the Clostridium limosum C3 exoenzyme. Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells. Stilla A; Di Paola S; Dani N; Krebs C; Arrizza A; Corda D; Haag F; Koch-Nolte F; Di Girolamo M Eur J Cell Biol; 2011 Aug; 90(8):665-77. PubMed ID: 21616557 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the catalytic signature of Scabin toxin, a DNA-targeting ADP-ribosyltransferase. Lyons B; Lugo MR; Carlin S; Lidster T; Merrill AR Biochem J; 2018 Jan; 475(1):225-245. PubMed ID: 29208763 [TBL] [Abstract][Full Text] [Related]
17. The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site. Bewley MC; Davis CA; Marohnic CC; Taormina D; Barber MJ Biochemistry; 2003 Nov; 42(45):13145-51. PubMed ID: 14609324 [TBL] [Abstract][Full Text] [Related]
18. Structural basis of autoinhibition and activation of the DNA-targeting ADP-ribosyltransferase pierisin-1. Oda T; Hirabayashi H; Shikauchi G; Takamura R; Hiraga K; Minami H; Hashimoto H; Yamamoto M; Wakabayashi K; Shimizu T; Sato M J Biol Chem; 2017 Sep; 292(37):15445-15455. PubMed ID: 28765284 [TBL] [Abstract][Full Text] [Related]
19. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization. Wilde C; Vogelsgesang M; Aktories K Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311 [TBL] [Abstract][Full Text] [Related]
20. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities. Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]