These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 12940937)

  • 1. Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue.
    Steele DS; Duke AM
    Acta Physiol Scand; 2003 Sep; 179(1):39-48. PubMed ID: 12940937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying changes of tetanic [Ca2+]i and force in skeletal muscle.
    Westerblad H; Allen DG
    Acta Physiol Scand; 1996 Mar; 156(3):407-16. PubMed ID: 8729701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose.
    Kabbara AA; Nguyen LT; Stephenson GM; Allen DG
    J Muscle Res Cell Motil; 2000; 21(5):481-9. PubMed ID: 11129439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions.
    Nielsen JS; Sahlin K; Ørtenblad N
    Acta Physiol (Oxf); 2007 Nov; 191(3):217-28. PubMed ID: 17635412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interdependent effects of inorganic phosphate and creatine phosphate on sarcoplasmic reticulum Ca2+ regulation in mechanically skinned rat skeletal muscle.
    Duke AM; Steele DS
    J Physiol; 2001 Mar; 531(Pt 3):729-42. PubMed ID: 11251054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle.
    Fink RH; Veigel C
    Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle.
    Westerblad H; Allen DG
    Pflugers Arch; 1996 Apr; 431(6):964-70. PubMed ID: 8927516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic and sarcoplasmic reticulum Ca2+ cycling responses in human muscle 4 days following prolonged exercise.
    Duhamel TA; Green HJ; Perco JG; Ouyang J
    Can J Physiol Pharmacol; 2005 Jul; 83(7):643-55. PubMed ID: 16091790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle fatigue: the role of intracellular calcium stores.
    Allen DG; Kabbara AA; Westerblad Hk
    Can J Appl Physiol; 2002 Feb; 27(1):83-96. PubMed ID: 11880693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional significance of Ca2+ in long-lasting fatigue of skeletal muscle.
    Westerblad H; Bruton JD; Allen DG; Lännergren J
    Eur J Appl Physiol; 2000 Oct; 83(2-3):166-74. PubMed ID: 11104057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue.
    Allen DG; Clugston E; Petersen Y; Röder IV; Chapman B; Rudolf R
    J Appl Physiol (1985); 2011 Aug; 111(2):358-66. PubMed ID: 21512148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle function: role of ionic changes in fatigue, damage and disease.
    Allen DG
    Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):485-93. PubMed ID: 15298539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of congestive heart failure on Ca2+ handling in skeletal muscle during fatigue.
    Lunde PK; Sejersted OM; Thorud HM; Tønnessen T; Henriksen UL; Christensen G; Westerblad H; Bruton J
    Circ Res; 2006 Jun; 98(12):1514-9. PubMed ID: 16690878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium exchange hypothesis of skeletal muscle fatigue: a brief review.
    Williams JH; Klug GA
    Muscle Nerve; 1995 Apr; 18(4):421-34. PubMed ID: 7715628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat.
    Posterino GS; Fryer MW
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):97-108. PubMed ID: 9729620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired calcium release during fatigue.
    Allen DG; Lamb GD; Westerblad H
    J Appl Physiol (1985); 2008 Jan; 104(1):296-305. PubMed ID: 17962573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium phosphate precipitation in the sarcoplasmic reticulum reduces action potential-mediated Ca2+ release in mammalian skeletal muscle.
    Dutka TL; Cole L; Lamb GD
    Am J Physiol Cell Physiol; 2005 Dec; 289(6):C1502-12. PubMed ID: 16093278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.