BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12941293)

  • 1. Effect of linker sequence on the stability of circularly permuted variants of ribonuclease T1.
    Garrett JB; Mullins LS; Raushel FM
    Bioorg Chem; 2003 Oct; 31(5):412-24. PubMed ID: 12941293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are turns required for the folding of ribonuclease T1?
    Garrett JB; Mullins LS; Raushel FM
    Protein Sci; 1996 Feb; 5(2):204-11. PubMed ID: 8745397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of primary sequence transpositions on the folding pathways of ribonuclease T1.
    Johnson JL; Raushel FM
    Biochemistry; 1996 Aug; 35(31):10223-33. PubMed ID: 8756488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1.
    Mayr LM; Willbold D; Landt O; Schmid FX
    Protein Sci; 1994 Feb; 3(2):227-39. PubMed ID: 8003959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion in barnase of a loop sequence from ribonuclease T1. Investigating sequence and structure alignments by protein engineering.
    Vuilleumier S; Fersht AR
    Eur J Biochem; 1994 May; 221(3):1003-12. PubMed ID: 8181455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine.
    Mayr LM; Landt O; Hahn U; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):897-912. PubMed ID: 8515459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a trans-proline in the folding mechanism of ribonuclease T1.
    Schindler T; Mayr LM; Landt O; Hahn U; Schmid FX
    Eur J Biochem; 1996 Oct; 241(2):516-24. PubMed ID: 8917450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds.
    Pace CN; Grimsley GR; Thomson JA; Barnett BJ
    J Biol Chem; 1988 Aug; 263(24):11820-5. PubMed ID: 2457027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58----Ala.
    McNutt M; Mullins LS; Raushel FM; Pace CN
    Biochemistry; 1990 Aug; 29(33):7572-6. PubMed ID: 1980207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1.
    Shirley BA; Stanssens P; Hahn U; Pace CN
    Biochemistry; 1992 Jan; 31(3):725-32. PubMed ID: 1731929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of ribonuclease T1 denaturation.
    Hu CQ; Sturtevant JM; Thomson JA; Erickson RE; Pace CN
    Biochemistry; 1992 May; 31(20):4876-82. PubMed ID: 1591247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of a non-prolyl cis peptide bond in ribonuclease T1.
    Mayr LM; Willbold D; Rösch P; Schmid FX
    J Mol Biol; 1994 Jul; 240(4):288-93. PubMed ID: 8035456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing protein stability by altering long-range coulombic interactions.
    Grimsley GR; Shaw KL; Fee LR; Alston RW; Huyghues-Despointes BM; Thurlkill RL; Scholtz JM; Pace CN
    Protein Sci; 1999 Sep; 8(9):1843-9. PubMed ID: 10493585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes.
    Quirk DJ; Park C; Thompson JE; Raines RT
    Biochemistry; 1998 Dec; 37(51):17958-64. PubMed ID: 9922164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1.
    Giletto A; Pace CN
    Biochemistry; 1999 Oct; 38(40):13379-84. PubMed ID: 10529213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric investigation of thermal stability and ligand-binding characteristics of disulfide-bond-cleaved ribonuclease T1.
    Haun MF; Wirth M; Rüterjans H
    Eur J Biochem; 1995 Jan; 227(1-2):516-23. PubMed ID: 7851431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences.
    Ikehara M; Ohtsuka E; Tokunaga T; Nishikawa S; Uesugi S; Tanaka T; Aoyama Y; Kikyodani S; Fujimoto K; Yanase K
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4695-9. PubMed ID: 3014504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.