BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12941297)

  • 1. The recovery of dipolar relaxation times from fluorescence decays as a tool to probe local dynamics in single tryptophan proteins.
    Mei G; Di Venere A; De Matteis F; Rosato N
    Arch Biochem Biophys; 2003 Sep; 417(2):159-64. PubMed ID: 12941297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease.
    Demchenko AP; Gryczynski I; Gryczynski Z; Wiczk W; Malak H; Fishman M
    Biophys Chem; 1993 Nov; 48(1):39-48. PubMed ID: 8257766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red-edge excitation fluorescence spectroscopy of proteins in reversed micelles.
    Guz A; Wasylewski Z
    J Protein Chem; 1994 May; 13(4):393-9. PubMed ID: 7527218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A time-resolved fluorescence study of human copper-zinc superoxide dismutase.
    Rosato N; Mei G; Gratton E; Bannister JV; Bannister WH; Finazzi-Agrò A
    Biophys Chem; 1990 May; 36(1):41-6. PubMed ID: 2207272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic insight into protein structure utilizing red edge excitation shift.
    Chattopadhyay A; Haldar S
    Acc Chem Res; 2014 Jan; 47(1):12-9. PubMed ID: 23981188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the involvement of electron transfer reactions in the fluorescence decay kinetics heterogeneity of proteins.
    Ababou A; Bombarda E
    Protein Sci; 2001 Oct; 10(10):2102-13. PubMed ID: 11567101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for multiexponential tryptophan fluorescence intensity decay in proteins.
    Bajzer Z; Prendergast FG
    Biophys J; 1993 Dec; 65(6):2313-23. PubMed ID: 8312471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red-edge excitation fluorescence measurements of several two-tryptophan-containing proteins.
    Wasylewski Z; Kołoczek H; Waśniowska A; Slizowska K
    Eur J Biochem; 1992 May; 206(1):235-42. PubMed ID: 1587274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of tryptophan fluorescence shifts in proteins.
    Vivian JT; Callis PR
    Biophys J; 2001 May; 80(5):2093-109. PubMed ID: 11325713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On spectral relaxation in proteins.
    Lakowicz JR
    Photochem Photobiol; 2000 Oct; 72(4):421-37. PubMed ID: 11045710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence decay characteristics of indole compounds revealed by time-resolved area-normalized emission spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Phys Chem A; 2009 Mar; 113(12):2847-53. PubMed ID: 19254015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Jun; 51(6):925-36. PubMed ID: 3607213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment: spectroscopic studies.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8938-46. PubMed ID: 9636035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability.
    Wong CY; Eftink MR
    Protein Sci; 1997 Mar; 6(3):689-97. PubMed ID: 9070451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of three-photon excitation FCS to the study of protein oligomerization.
    Ranjit S; Dvornikov A; Holland DA; Reinhart GD; Jameson DM; Gratton E
    J Phys Chem B; 2014 Dec; 118(50):14627-31. PubMed ID: 25438088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment.
    Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH
    Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanosecond relaxation dynamics of protein GB1 identified by the time-dependent red shift in the fluorescence of tryptophan and 5-fluorotryptophan.
    Toptygin D; Gronenborn AM; Brand L
    J Phys Chem B; 2006 Dec; 110(51):26292-302. PubMed ID: 17181288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.