BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12941641)

  • 1. Effects of water activity on oxygen-binding in high-molecular weight, extracellular invertebrate hemoglobin and hemocyanin.
    Hundahl C; Fago A; Weber RE
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Sep; 136(1):83-90. PubMed ID: 12941641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hydration on the mechanism of allosteric regulation: in situ measurements of the oxygen-linked kinetics of water binding to hemoglobin.
    Salvay AG; Grigera JR; Colombo MF
    Biophys J; 2003 Jan; 84(1):564-70. PubMed ID: 12524309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of two architectural types of hexagonal bilayer hemoglobin in annelids: comparison of 3D reconstruction volumes of Arenicola marina and Lumbricus terrestris hemoglobins.
    Jouan L; Taveau JC; Marco S; Lallier FH; Lamy JN
    J Mol Biol; 2001 Jan; 305(4):757-71. PubMed ID: 11162090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric effect of water in fish and human hemoglobins.
    Hundahl C; Fago A; Malte H; Weber RE
    J Biol Chem; 2003 Oct; 278(44):42769-73. PubMed ID: 12925528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A potential role for water in the modulation of oxygen-binding by tarantula hemocyanin.
    Hellmann N; Raithel K; Decker H
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Nov; 136(3):725-34. PubMed ID: 14613800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional properties of hemocyanin from Cyanagraea praedator, a deep-sea hydrothermal vent crab.
    Chausson F; Bridges CR; Sarradin PM; Green BN; Riso R; Caprais JC; Lallier FH
    Proteins; 2001 Dec; 45(4):351-9. PubMed ID: 11746683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperativity in Scapharca dimeric hemoglobin: simulation of binding intermediates and elucidation of the role of interfacial water.
    Zhou Y; Zhou H; Karplus M
    J Mol Biol; 2003 Feb; 326(2):593-606. PubMed ID: 12559925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A membrane-bound hemoglobin from gills of the green shore crab Carcinus maenas.
    Ertas B; Kiger L; Blank M; Marden MC; Burmester T
    J Biol Chem; 2011 Feb; 286(5):3185-93. PubMed ID: 21118803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viviparus ater hemocyanin: investigation of the dioxygen-binding site and stability of the oxy- and apo-forms.
    Georgieva DN; Stoeva S; Voelter W; Genov N
    Z Naturforsch C J Biosci; 2001; 56(9-10):843-7. PubMed ID: 11724393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The o-diphenol oxidase activity of arthropod hemocyanin.
    Zlateva T; Di Muro P; Salvato B; Beltramini M
    FEBS Lett; 1996 Apr; 384(3):251-4. PubMed ID: 8617365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of oxygen and carbon monoxide to arthropod hemocyanin: an allosteric analysis.
    Richey B; Decker H; Gill SJ
    Biochemistry; 1985 Jan; 24(1):109-17. PubMed ID: 3994961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water regulates oxygen binding in hagfish (Myxine glutinosa) hemoglobin.
    Müller G; Fago A; Weber RE
    J Exp Biol; 2003 Apr; 206(Pt 8):1389-95. PubMed ID: 12624173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding.
    Fariselli P; Bottoni A; Bernardi F; Casadio R
    Protein Sci; 1999 Jul; 8(7):1546-50. PubMed ID: 10422845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein solvation in allosteric regulation: a water effect on hemoglobin.
    Colombo MF; Rau DC; Parsegian VA
    Science; 1992 May; 256(5057):655-9. PubMed ID: 1585178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allostery in very large molecular assemblies.
    van Holde KE; Miller KI; van Olden E
    Biophys Chem; 2000 Aug; 86(2-3):165-72. PubMed ID: 11026681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the heterotropic and homotropic interactions of invertebrate giant hemoglobin.
    Numoto N; Nakagawa T; Kita A; Sasayama Y; Fukumori Y; Miki K
    Biochemistry; 2008 Oct; 47(43):11231-8. PubMed ID: 18834142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hierarchies in the structure and function of oxygen-binding proteins].
    Decker H; Sterner R
    Naturwissenschaften; 1990 Dec; 77(12):561-8. PubMed ID: 2074898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural analysis of large noncovalent oxygen binding proteins by MALLS and ESI-MS: a review on annelid hexagonal bilayer hemoglobin and crustacean hemocyanin.
    Bruneaux M; Rousselot M; Leize E; Lallier FH; Zal F
    Curr Protein Pept Sci; 2008 Apr; 9(2):150-80. PubMed ID: 18393886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inversion of the Bohr effect upon oxygen binding to 24-meric tarantula hemocyanin.
    Sterner R; Decker H
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4835-9. PubMed ID: 8197143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.