These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1294292)
1. Strong competitive inhibition of porcine pancreatic alpha-amylase by aminodeoxy derivatives of maltose and maltotriose. Lehmann J; Schmidt-Schuchardt M; Steck J Carbohydr Res; 1992 Dec; 237():177-83. PubMed ID: 1294292 [TBL] [Abstract][Full Text] [Related]
2. Photolabile derivatives of maltose and maltotriose as ligands for the affinity labelling of the maltodextrin-binding site in porcine pancreatic alpha-amylase. Blanc-Muesser M; Driguez H; Lehmann J; Steck J Carbohydr Res; 1992 Jan; 223():129-36. PubMed ID: 1596914 [TBL] [Abstract][Full Text] [Related]
3. Spacer-modified disaccharide and pseudo-trisaccharide methyl glycosides that mimic maltotriose, as competitive inhibitors for pancreatic alpha-amylase: a demonstration of the "clustering effect". Blanc-Muesser M; Vigne L; Driguez H; Lehmann J; Steck J; Urbahns K Carbohydr Res; 1992 Feb; 224():59-71. PubMed ID: 1591772 [TBL] [Abstract][Full Text] [Related]
4. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile. Seigner C; Prodanov E; Marchis-Mouren G Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of porcine pancreatic alpha-amylase. Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose. Al Kazaz M; Desseaux V; Marchis-Mouren G; Prodanov E; Santimone M Eur J Biochem; 1998 Feb; 252(1):100-7. PubMed ID: 9523717 [TBL] [Abstract][Full Text] [Related]
6. Maltosylamine, a specific inhibitor of beta-amylase. Walker DE; Axelrod B Arch Biochem Biophys; 1979 Jul; 195(2):392-5. PubMed ID: 157719 [No Abstract] [Full Text] [Related]
7. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors. Nahoum V; Roux G; Anton V; Rougé P; Puigserver A; Bischoff H; Henrissat B; Payan F Biochem J; 2000 Feb; 346 Pt 1(Pt 1):201-8. PubMed ID: 10657258 [TBL] [Abstract][Full Text] [Related]
8. Effect of a p-nitro group of phenyl-maltooligosaccharide substrate on the change of action specificity of lysine-modified porcine pancreatic alpha-amylase. Yamashita H; Nakatani H; Tonomura B Biochem Mol Biol Int; 1995 Jan; 35(1):79-85. PubMed ID: 7735142 [TBL] [Abstract][Full Text] [Related]
9. Carbohydrate and protein-based inhibitors of porcine pancreatic alpha-amylase: structure analysis and comparison of their binding characteristics. Machius M; Vértesy L; Huber R; Wiegand G J Mol Biol; 1996 Jul; 260(3):409-21. PubMed ID: 8757803 [TBL] [Abstract][Full Text] [Related]
10. Subsite profile of the active center of porcine pancreatic alpha-amylase. Kinetic studies using maltooligosaccharides as substrates. Prodanov E; Seigner C; Marchis-Mouren G Biochem Biophys Res Commun; 1984 Jul; 122(1):75-81. PubMed ID: 6611158 [TBL] [Abstract][Full Text] [Related]
11. The mechanism of porcine pancreatic alpha-amylase. Kinetic evidence for two additional carbohydrate-binding sites. Alkazaz M; Desseaux V; Marchis-Mouren G; Payan F; Forest E; Santimone M Eur J Biochem; 1996 Nov; 241(3):787-96. PubMed ID: 8944767 [TBL] [Abstract][Full Text] [Related]
12. The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Seigner C; Prodanov E; Marchis-Mouren G Biochim Biophys Acta; 1987 Jun; 913(2):200-9. PubMed ID: 3496119 [TBL] [Abstract][Full Text] [Related]
13. Structure of a pancreatic alpha-amylase bound to a substrate analogue at 2.03 A resolution. Qian M; Spinelli S; Driguez H; Payan F Protein Sci; 1997 Nov; 6(11):2285-96. PubMed ID: 9385631 [TBL] [Abstract][Full Text] [Related]
14. Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques. Brayer GD; Sidhu G; Maurus R; Rydberg EH; Braun C; Wang Y; Nguyen NT; Overall CM; Withers SG Biochemistry; 2000 Apr; 39(16):4778-91. PubMed ID: 10769135 [TBL] [Abstract][Full Text] [Related]
15. Spacer-modified, photolabile tetrasaccharides as analogues of maltopentaose are versatile probes for porcine pancreatic alpha-amylase. Lehmann J; Ziser L Carbohydr Res; 1992 Feb; 225(1):83-97. PubMed ID: 1633607 [TBL] [Abstract][Full Text] [Related]
16. Inhibition and binding modes of low-molecular-weight inhibitors of porcine pancreatic alpha-amylase. Yamashita H; Nakatani H; Tonomura B J Biochem; 1992 Feb; 111(2):182-5. PubMed ID: 1569042 [TBL] [Abstract][Full Text] [Related]
17. Enzyme-catalyzed condensation reaction in a mammalian alpha-amylase. High-resolution structural analysis of an enzyme-inhibitor complex. Qian M; Nahoum V; Bonicel J; Bischoff H; Henrissat B; Payan F Biochemistry; 2001 Jun; 40(25):7700-9. PubMed ID: 11412124 [TBL] [Abstract][Full Text] [Related]
18. Effect of pressure on the mechanism of hydrolysis of maltotetraose, maltopentaose, and maltohexose catalyzed by porcine pancreatic alpha-amylase. Matsumoto T; Makimoto S; Taniguchi Y Biochim Biophys Acta; 1997 Dec; 1343(2):243-50. PubMed ID: 9434115 [TBL] [Abstract][Full Text] [Related]
19. Porcine pancreatic alpha-amylase: a model for structure--function studies of homodepolymerases. Desseaux V; Seigner C; Pierron Y; Grisoni ML; Marchis-Mouren G Biochimie; 1988 Sep; 70(9):1163-70. PubMed ID: 3147708 [TBL] [Abstract][Full Text] [Related]
20. The effect of substrate modification on porcine pancreatic alpha-amylase subsite binding: hydrolysis of substrates containing 2-deoxy-D-glucose and 2-amino-2-deoxy-D-glucose. Braun PJ; French D; Robyt JF Arch Biochem Biophys; 1985 Oct; 242(1):231-9. PubMed ID: 2932056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]