These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12942961)

  • 1. Thermal modeling and performance analysis of a thermoacoustic refrigerator.
    Holmberg DG; Chen GS; Lin HT; Wo AM
    J Acoust Soc Am; 2003 Aug; 114(2):782-91. PubMed ID: 12942961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condensation in a steady-flow thermoacoustic refrigerator.
    Hiller RA; Swift GW
    J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of inert gas-condensing vapor thermoacoustics: transport equations.
    Slaton WV; Raspet R; Hickey CJ; Hiller RA
    J Acoust Soc Am; 2002 Oct; 112(4):1423-30. PubMed ID: 12398450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonlinear model of thermoacoustic devices.
    Karpov S; Prosperetti A
    J Acoust Soc Am; 2002 Oct; 112(4):1431-44. PubMed ID: 12398451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance measurements on a thermoacoustic refrigerator driven at high amplitudes.
    Poese ME; Garrett SL
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2480-6. PubMed ID: 10830371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Heat Exchanger Design on the Thermal Performance of a Domestic Wine Cooler Driven by a Magnetic Refrigeration System.
    Peixer GF; Dutra SL; Calomeno RS; Sá NM; Lang GB; Lozano JA; Barbosa JR
    An Acad Bras Cienc; 2022; 94(1):e20200563. PubMed ID: 35107515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The optimal stack spacing for thermoacoustic refrigeration.
    Tijani ME; Zeegers JC; de Waele AT
    J Acoust Soc Am; 2002 Jul; 112(1):128-33. PubMed ID: 12141337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Working gases in thermoacoustic engines.
    Belcher JR; Slaton WV; Raspet R; Bass HE; Lightfoot J
    J Acoust Soc Am; 1999 May; 105(5):2677-84. PubMed ID: 10335618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold wire constant voltage anemometry to measure temperature fluctuations and its application in a thermoacoustic system.
    Cleve S; Jondeau E; Blanc-Benon P; Comte-Bellot G
    Rev Sci Instrum; 2017 Apr; 88(4):044904. PubMed ID: 28456248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stationary velocity and pressure gradients in a thermoacoustic stack.
    Waxler R
    J Acoust Soc Am; 2001 Jun; 109(6):2739-50. PubMed ID: 11425116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of thermoacoustic systems using the nonlinear frequency domain method.
    de Jong JA; Wijnant YH; Wilcox D; de Boer A
    J Acoust Soc Am; 2015 Sep; 138(3):1241-52. PubMed ID: 26428763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
    de Jong JA; Wijnant YH; de Boer A
    J Acoust Soc Am; 2014 Mar; 135(3):1149-58. PubMed ID: 24606258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature profiles and heat fluxes observed in molecular dynamics simulations of force-driven liquid flows.
    Ghorbanian J; Beskok A
    Phys Chem Chem Phys; 2017 Apr; 19(16):10317-10325. PubMed ID: 28398441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.