These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12942970)

  • 1. A parametric model of the spectral periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):883-95. PubMed ID: 12942970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the effect of suppression on the periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):859-70. PubMed ID: 12942968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of suppression on the periodicity of stimulus frequency otoacoustic emissions: experimental data.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):871-82. PubMed ID: 12942969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Dec; 122(6):3562-75. PubMed ID: 18247764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-frequency otoacoustic emissions measured with amplitude-modulated suppressor tones (L).
    Neely ST; Johnson TA; Garner CA; Gorga MP
    J Acoust Soc Am; 2005 Oct; 118(4):2124-7. PubMed ID: 16266132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions.
    Dewey JB; Dhar S
    J Acoust Soc Am; 2017 Nov; 142(5):3069. PubMed ID: 29195446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus frequency otoacoustic emissions evoked by swept tones.
    Chen S; Deng J; Bian L; Li G
    Hear Res; 2013 Dec; 306():104-14. PubMed ID: 24113114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
    Abdala C; Luo P; Guardia Y
    Trends Hear; 2019; 23():2331216519889226. PubMed ID: 31789131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing two proposed measures of cochlear mechanical filter bandwidth based on stimulus frequency otoacoustic emissions.
    Lineton B; Wildgoose CM
    J Acoust Soc Am; 2009 Mar; 125(3):1558-66. PubMed ID: 19275314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears.
    Schairer KS; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2003 Aug; 114(2):944-66. PubMed ID: 12942975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species differences of distortion-product otoacoustic emissions: comment on "Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones" [J. Acoust. Soc. Am. 102, 413-429 (1997)].
    Whitehead ML
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2740-2. PubMed ID: 9604365
    [No Abstract]   [Full Text] [Related]  

  • 17. Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
    Souter M
    Hear Res; 1995 Nov; 91(1-2):167-77. PubMed ID: 8647718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
    Goodman SS; Lee C; Guinan JJ; Lichtenhan JT
    Biophys J; 2020 Mar; 118(5):1183-1195. PubMed ID: 31968228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears.
    Schairer KS; Ellison JC; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2006 Aug; 120(2):901-14. PubMed ID: 16938978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.