These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 12943)
1. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport. Komor E; Tanner W Eur J Biochem; 1976 Nov; 70(1):197-204. PubMed ID: 12943 [TBL] [Abstract][Full Text] [Related]
2. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system. Grüneberg A; Komor E Biochim Biophys Acta; 1976 Sep; 448(1):133-42. PubMed ID: 9152 [TBL] [Abstract][Full Text] [Related]
3. The effect of intracellular pH on the rate of hexose uptake in Chlorella. Komor E; Schwab WG; Tanner W Biochim Biophys Acta; 1979 Aug; 555(3):524-30. PubMed ID: 39601 [TBL] [Abstract][Full Text] [Related]
4. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system. Komor E; Tanner W J Gen Physiol; 1974 Nov; 64(5):568-81. PubMed ID: 4443792 [TBL] [Abstract][Full Text] [Related]
5. Active transport of L-sorbose and 2-deoxy-D-galactose in Saccharomyces fragilis. Jaspers HT; van Steveninck J Biochim Biophys Acta; 1977 Sep; 469(3):292-300. PubMed ID: 20143 [TBL] [Abstract][Full Text] [Related]
6. A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella. Schwab WG; Komor E FEBS Lett; 1978 Mar; 87(1):157-60. PubMed ID: 24552 [No Abstract] [Full Text] [Related]
7. The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Komor E; Tanner W Eur J Biochem; 1974 May; 44(1):219-23. PubMed ID: 4854863 [No Abstract] [Full Text] [Related]
8. The influence of pH on the cell membrane potential of primary cultured rat hepatocytes as measured with tetraphenylphosphonium and dimethyloxazolidine-2,4-dione. Ehrhardt V Biochim Biophys Acta; 1984 Aug; 775(2):182-8. PubMed ID: 6466666 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen ion gradients across the mitochondrial, endosomal and plasma membranes in bloodstream forms of trypanosoma brucei solving the three-compartment problem. Nolan DP; Voorheis HP Eur J Biochem; 2000 Aug; 267(15):4601-14. PubMed ID: 10903492 [TBL] [Abstract][Full Text] [Related]
10. Glucose uptake by Chlorella vulgaris: the coupling of protonmotive potential difference to glucose transport. Komor E Biochem Soc Trans; 1980 Dec; 8(6):681-3. PubMed ID: 7461251 [No Abstract] [Full Text] [Related]
11. Electrical properties of the plasma membrane of microplasmodia of Physarum polycephalum. Fingerle J; Gradmann D J Membr Biol; 1982; 68(1):67-77. PubMed ID: 7108943 [TBL] [Abstract][Full Text] [Related]
12. Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium. Michel TA; Macy JM J Bacteriol; 1990 Mar; 172(3):1430-5. PubMed ID: 2307654 [TBL] [Abstract][Full Text] [Related]
13. Characterization of transmembrane movement of glucose and glucose analogs in Streptococcus mutants Ingbritt. Dashper SG; Reynolds EC J Bacteriol; 1990 Feb; 172(2):556-63. PubMed ID: 2298698 [TBL] [Abstract][Full Text] [Related]
14. Control of membrane potential by external H+ concentration in Bacillus subtilis as determined by an ion-selective electrode. Hosoi S; Mochizuki N; Hayashi S; Kasai M Biochim Biophys Acta; 1980 Aug; 600(3):844-52. PubMed ID: 6773573 [TBL] [Abstract][Full Text] [Related]
15. In vivo characterization of the electrochemical proton gradient generated in darkness in green algae and its kinetic effects on cytochrome b6f turnover. Finazzi G; Rappaport F Biochemistry; 1998 Jul; 37(28):9999-10005. PubMed ID: 9665705 [TBL] [Abstract][Full Text] [Related]
16. Respiratory increase and active hexose uptake of Chlorella vulgaris. Decker M; Tanner W Biochim Biophys Acta; 1972 Jun; 266(3):661-9. PubMed ID: 5040250 [No Abstract] [Full Text] [Related]
17. A confirmation of the proposed model for the hexose uptake system of Chlorella vulgaris. Anaerobic studies in the light and in the dark. Komor E; Loos E; Tanner W J Membr Biol; 1973; 12(1):89-99. PubMed ID: 4781067 [No Abstract] [Full Text] [Related]
18. Characterization and partial purification of an inducible protein related to hexose proton cotransport of Chlorella vulgaris. Fenzl F; Decker M; Haass D; Tanner W Eur J Biochem; 1977 Feb; 72(3):509-14. PubMed ID: 837927 [TBL] [Abstract][Full Text] [Related]
19. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans. Prasad R; Höfer M Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329 [TBL] [Abstract][Full Text] [Related]
20. Sugar transport in Coprinus cinereus. Moore D; Devadatham MS Biochim Biophys Acta; 1979 Feb; 550(3):515-26. PubMed ID: 33708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]