These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1294325)

  • 1. Catalysis of hydrolysis and aminolysis of non-classical beta-lactam antibiotics by metal ions and metal chelates.
    Méndez R; Alemany T; Martín-Villacorta J
    Chem Pharm Bull (Tokyo); 1992 Dec; 40(12):3228-33. PubMed ID: 1294325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further studies on the catalysis of hydrolysis and aminolysis of benzylpenicillin by metal chelates.
    Tomida H; Schwartz MA
    J Pharm Sci; 1983 Apr; 72(4):331-5. PubMed ID: 6864465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability in aqueous solution of two monocyclic beta-lactam antibiotics: aztreonam and nocardicin A.
    Méndez R; Alemany T; Martín-Villacorta J
    Chem Pharm Bull (Tokyo); 1992 Dec; 40(12):3222-7. PubMed ID: 1294324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aminolysis of N-aroyl beta-lactams occurs by a concerted mechanism.
    Tsang WY; Ahmed N; Page MI
    Org Biomol Chem; 2007 Feb; 5(3):485-93. PubMed ID: 17252131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion/buffer interactions. Stability of binary and ternary complexes containing 2-amino-2(hydroxymethyl)-1,3-propanediol (Tris) and adenosine 5'-triphosphate (ATP).
    Fischer BE; Häring UK; Tribolet R; Sigel H
    Eur J Biochem; 1979 Mar; 94(2):523-30. PubMed ID: 428398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of zinc ion-mediated degradation of cephalosporins in tromethamine solution.
    Tomida H; Kohashi K; Tsuruta Y; Kiryu S; Schwartz MA
    Pharm Res; 1987 Jun; 4(3):214-9. PubMed ID: 3509284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of mu-hydroxodizinc(II) centers in enzymatic catalysis through model studies.
    Kaminskaia NV; He C; Lippard SJ
    Inorg Chem; 2000 Jul; 39(15):3365-73. PubMed ID: 11196876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrofluorimetric study of the degradation of alpha-amino beta-lactam antibiotics catalysed by metal ions in methanol.
    Gutiérez Navarro P; el Bekkouri A; Rodríguez Reinoso E
    Analyst; 1998 Nov; 123(11):2263-6. PubMed ID: 10396799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of beta-lactam antibiotics in the presence of Zn2+ and 2-amino-2-hydroxymethylpropane-1,3-diol (Tris). A hypothetical non-enzymic model of beta-lactamases.
    Company M; Benitez MJ; Jiménez JS
    Int J Biol Macromol; 1991 Aug; 13(4):225-30. PubMed ID: 1777429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the metal-ion-promoted dephosphorylation of the 5'-triphosphates of adenosine, inosine, guanosine and cytidine by Mn2+, Ni2+ and Zn2+ in binary and ternary complexes.
    Amsler PE; Sigel H
    Eur J Biochem; 1976 Apr; 63(2):569-81. PubMed ID: 4327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of ertapenem in aqueous solutions.
    Zajac M; Cielecka-Piontek J; Jelińska A
    J Pharm Biomed Anal; 2007 Jan; 43(2):445-9. PubMed ID: 16914282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of hydrolysis of beta-lactams with a zinc(II)-beta-lactamase produced from Serratia marcescens (IMP-1) on pH and concentration of zinc(II) ion: dissociation of Zn(II) from IMP-1 in acidic medium.
    Goto M; Yasuzawa H; Higashi T; Yamaguchi Y; Kawanami A; Mifune S; Mori H; Nakayama H; Harada K; Arakawa Y
    Biol Pharm Bull; 2003 May; 26(5):589-94. PubMed ID: 12736495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Penicillinase from B. licheniformis. Determination of the ionization constants of the enzymatic hydrolysis products of beta-lactam antibiotics].
    Satarova DE; Nys PS; Korchagin VB; Savitskaia EM
    Antibiotiki; 1984 Jan; 29(1):14-9. PubMed ID: 6607709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular general acid catalysis in the aminolysis of beta-lactam antibiotics.
    Llinas A; Page MI
    Org Biomol Chem; 2004 Mar; 2(5):651-4. PubMed ID: 14985803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of the dinuclear cobalt-beta-lactamase from Bacillus cereus in catalysing the hydrolysis of beta-lactams.
    Badarau A; Damblon C; Page MI
    Biochem J; 2007 Jan; 401(1):197-203. PubMed ID: 16961465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe(III)-promoted transformation of β-lactam antibiotics: Hydrolysis vs oxidation.
    Chen J; Wang Y; Qian Y; Huang T
    J Hazard Mater; 2017 Aug; 335():117-124. PubMed ID: 28437695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis.
    Warnecke JM; Held R; Busch S; Hartmann RK
    J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.