These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 12943277)
1. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies. Stoykov NS; Kuiken TA; Lowery MM; Taflove A IEEE Trans Biomed Eng; 2003 Sep; 50(9):1100-7. PubMed ID: 12943277 [TBL] [Abstract][Full Text] [Related]
2. Modeling of noninvasive microwave characterization of breast tumors. Huo Y; Bansal R; Zhu Q IEEE Trans Biomed Eng; 2004 Jul; 51(7):1089-94. PubMed ID: 15248525 [TBL] [Abstract][Full Text] [Related]
3. Two-dimensional SPICE-linked multiresolution impedance method for low-frequency electromagnetic interactions. Eberdt M; Brown PK; Lazzi G IEEE Trans Biomed Eng; 2003 Jul; 50(7):881-9. PubMed ID: 12848356 [TBL] [Abstract][Full Text] [Related]
4. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. Miranda PC; Hallett M; Basser PJ IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275 [TBL] [Abstract][Full Text] [Related]
5. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation. Sel D; Mazeres S; Teissie J; Miklavcic D IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992 [TBL] [Abstract][Full Text] [Related]
6. Electric fields in the human body due to electrostatic discharges. Dawson TW; Stuchly MA; Kavet R IEEE Trans Biomed Eng; 2004 Aug; 51(8):1460-8. PubMed ID: 15311833 [TBL] [Abstract][Full Text] [Related]
7. Frequency- and time-domain FEM models of EMG: capacitive effects and aspects of dispersion. Stoykov NS; Lowery MM; Taflove A; Kuiken TA IEEE Trans Biomed Eng; 2002 Aug; 49(8):763-72. PubMed ID: 12148814 [TBL] [Abstract][Full Text] [Related]
8. Finite element modeling of electromagnetic signal propagation in a phantom arm. Kuiken TA; Stoykov NS; Popović M; Lowery M; Taflove A IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):346-54. PubMed ID: 12018647 [TBL] [Abstract][Full Text] [Related]
9. Numerical study on an equivalent source model for inhomogeneous magnetic field dosimetry in the low-frequency range. Nishizawa S; Ruoss HO; Landstorfer FM; Hashimoto O IEEE Trans Biomed Eng; 2004 Apr; 51(4):612-6. PubMed ID: 15072215 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses. Simicevic N Phys Med Biol; 2005 Nov; 50(21):5041-53. PubMed ID: 16237240 [TBL] [Abstract][Full Text] [Related]
11. Discrete dipole approximation for time-domain computation of optical forces on magnetodielectric scatterers. Chaumet PC; Belkebir K; Rahmani A Opt Express; 2011 Jan; 19(3):2466-75. PubMed ID: 21369066 [TBL] [Abstract][Full Text] [Related]
12. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. Buitenweg JR; Rutten WL; Marani E IEEE Trans Biomed Eng; 2003 Apr; 50(4):501-9. PubMed ID: 12723062 [TBL] [Abstract][Full Text] [Related]
13. Effects of geometry discretization aspects on the numerical solution of the bioheat transfer equation with the FDTD technique. Samaras T; Christ A; Kuster N Phys Med Biol; 2006 Jun; 51(11):N221-9. PubMed ID: 16723759 [TBL] [Abstract][Full Text] [Related]
14. Prediction of electromagnetic field distributions inside biological bodies by using an inverse scattering procedure based on a statistical cooling algorithm. Caorsi S; Massa A Bioelectromagnetics; 2000 Sep; 21(6):422-31. PubMed ID: 10972946 [TBL] [Abstract][Full Text] [Related]
15. Electric field of a six-needle array electrode used in drug and DNA delivery in vivo: analytical versus numerical solution. Dev SB; Dhar D; Krassowska W IEEE Trans Biomed Eng; 2003 Nov; 50(11):1296-300. PubMed ID: 14620000 [TBL] [Abstract][Full Text] [Related]
16. Development of numerical phantoms by MRI for RF electromagnetic dosimetry: a female model. Mazzurana M; Sandrini L; Vaccari A; Malacarne C; Cristoforetti L; Pontalti R Radiat Prot Dosimetry; 2004; 111(4):445-51. PubMed ID: 15550719 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method. Siauve N; Nicolas L; Vollaire C; Marchal C Int J Hyperthermia; 2004 Dec; 20(8):815-33. PubMed ID: 15764344 [TBL] [Abstract][Full Text] [Related]
18. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method. Reck K; Thomsen EV; Hansen O Opt Express; 2011 Jan; 19(3):1808-23. PubMed ID: 21368995 [TBL] [Abstract][Full Text] [Related]
19. Transcranial direct current stimulation: a computer-based human model study. Wagner T; Fregni F; Fecteau S; Grodzinsky A; Zahn M; Pascual-Leone A Neuroimage; 2007 Apr; 35(3):1113-24. PubMed ID: 17337213 [TBL] [Abstract][Full Text] [Related]
20. Use of the z-transform to investigate nanopulse penetration of biological matter. Su S; Dai W; Haynie DT; Simicevic N Bioelectromagnetics; 2005 Jul; 26(5):389-97. PubMed ID: 15931682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]