These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12943382)

  • 1. Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes.
    Matsuo Y; Tahara K; Nakamura E
    Org Lett; 2003 Sep; 5(18):3181-4. PubMed ID: 12943382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clar-Kekule structuring in armchair carbon nanotubes.
    Martín-Martínez FJ; Melchor S; Dobado JA
    Org Lett; 2008 May; 10(10):1991-4. PubMed ID: 18429616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
    Liu LV; Tian WQ; Chen YK; Zhang YA; Wang YA
    Nanoscale; 2010 Feb; 2(2):254-61. PubMed ID: 20644802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge effects, electronic arrangement, and aromaticity patterns on finite-length carbon nanotubes.
    Martín-Martínez FJ; Melchor S; Dobado JA
    Phys Chem Chem Phys; 2011 Jul; 13(28):12844-57. PubMed ID: 21687895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and reactivity properties of finite length cap-ended single-wall carbon nanotubes.
    Zhao J; Balbuena PB
    J Phys Chem A; 2006 Mar; 110(8):2771-5. PubMed ID: 16494388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube.
    Zhou Z; Steigerwald M; Hybertsen M; Brus L; Friesner RA
    J Am Chem Soc; 2004 Mar; 126(11):3597-607. PubMed ID: 15025489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-cap effects on vibrational structures of finite-length carbon nanotubes.
    Yumura T; Nozaki D; Bandow S; Yoshizawa K; Iijima S
    J Am Chem Soc; 2005 Aug; 127(33):11769-76. PubMed ID: 16104755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon chains and the (5,5) single-walled nanotube: structure and energetics versus length.
    Rodriguez KR; Williams SM; Young MA; Teeters-Kennedy S; Heer JM; Coe JV
    J Chem Phys; 2006 Nov; 125(19):194716. PubMed ID: 17129159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic properties of capped, finite-length armchair carbon nanotubes in an electric field.
    Chen C; Tsai CC; Lu JM; Hwang CC
    J Phys Chem B; 2006 Jun; 110(25):12384-7. PubMed ID: 16800563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic functionalization of the sidewalls of carbon nanotubes by diels-alder reactions: a theoretical prediction.
    Lu X; Tian F; Wang N; Zhang Q
    Org Lett; 2002 Nov; 4(24):4313-5. PubMed ID: 12443086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies of carbon nanotube-hydrocarbon bond strengths at nanotube ends: effect of link heteroatom and hydrocarbon structure.
    Gustavsson S; Rosén A; Grennberg H; Bolton K
    Chemistry; 2004 May; 10(9):2223-7. PubMed ID: 15112211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addition of carbenes to the sidewalls of single-walled carbon nanotubes.
    Bettinger HF
    Chemistry; 2006 May; 12(16):4372-9. PubMed ID: 16555363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotubes: number of Kekulé structures and aromaticity.
    Lukovits I; Graovac A; Kálmán E; Kaptay G; Nagy P; Nikolić S; Sytchev J; Trinajstić N
    J Chem Inf Comput Sci; 2003; 43(2):609-14. PubMed ID: 12653528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-length models of carbon nanotubes based on Clar sextet theory.
    Baldoni M; Sgamellotti A; Mercuri F
    Org Lett; 2007 Oct; 9(21):4267-70. PubMed ID: 17854196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jahn-Teller distortion of ionized and excited carbon nanotubes.
    Szakács P; Kocsis D; Surján PR
    J Chem Phys; 2010 Jan; 132(3):034309. PubMed ID: 20095741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes.
    Zurek E; Autschbach J
    J Am Chem Soc; 2004 Oct; 126(40):13079-88. PubMed ID: 15469306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.