BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12943418)

  • 1. Palladium-catalyzed enantiospecific reaction of propargylic carbonates with phenols: cascade chirality transfer.
    Yoshida M; Fujita M; Ihara M
    Org Lett; 2003 Sep; 5(18):3325-7. PubMed ID: 12943418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel methodology for the synthesis of cyclic carbonates based on the palladium-catalyzed cascade reaction of 4-methoxycarbonyloxy-2-butyn-1-ols with phenols, involving a novel carbon dioxide elimination-fixation process.
    Yoshida M; Fujita M; Ishii T; Ihara M
    J Am Chem Soc; 2003 Apr; 125(16):4874-81. PubMed ID: 12696907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of palladium-catalyzed transformations using propargylic compounds.
    Yoshida M
    Chem Pharm Bull (Tokyo); 2012; 60(3):285-99. PubMed ID: 22382407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium-catalyzed carbon dioxide elimination-fixation reaction of 4-methoxycarbonyloxy-2-buten-1-ols.
    Yoshida M; Ohsawa Y; Ihara M
    J Org Chem; 2004 Mar; 69(5):1590-7. PubMed ID: 14987015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly regioselective synthesis of 2,3-disubstituted indenes via a novel palladium-catalyzed cyclization reaction of propargylic carbonates with carbon nucleophiles.
    Duan XH; Guo LN; Bi HP; Liu XY; Liang YM
    Org Lett; 2006 Dec; 8(25):5777-80. PubMed ID: 17134270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols.
    Gais HJ; Jagusch T; Spalthoff N; Gerhards F; Frank M; Raabe G
    Chemistry; 2003 Sep; 9(17):4202-21. PubMed ID: 12953206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective construction of substituted chromans by palladium-catalyzed cyclization of propargylic carbonates with 2-(2-hydroxyphenyl)acetates.
    Yoshida M; Higuchi M; Shishido K
    Org Lett; 2009 Oct; 11(20):4752-5. PubMed ID: 19810770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palladium-catalyzed asymmetric synthesis of axially chiral (allenylmethyl)silanes and chirality transfer to stereogenic carbon centers in S(E)' reactions.
    Ogasawara M; Ueyama K; Nagano T; Mizuhata Y; Hayashi T
    Org Lett; 2003 Jan; 5(2):217-9. PubMed ID: 12529144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General and functional group-tolerable approach to allenylsilanes by rhodium-catalyzed coupling between propargylic carbonates and a silylboronate.
    Ohmiya H; Ito H; Sawamura M
    Org Lett; 2009 Dec; 11(24):5618-20. PubMed ID: 19908884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palladium-catalyzed diastereoselective coupling of propargylic oxiranes with terminal alkynes.
    Yoshida M; Hayashi M; Shishido K
    Org Lett; 2007 Apr; 9(9):1643-6. PubMed ID: 17388602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-catalysed cascade ring expansion reaction of cyclobutanols that have a propargylic moiety with nucleophiles.
    Yoshida M; Komatsuzaki Y; Nemoto H; Ihara M
    Org Biomol Chem; 2004 Nov; 2(21):3099-107. PubMed ID: 15505714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of dehydro-beta-amino esters via highly regioselective amination of allylic carbonates.
    Benfatti F; Cardillo G; Gentilucci L; Mosconi E; Tolomelli A
    Org Lett; 2008 Jun; 10(12):2425-8. PubMed ID: 18484731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium-catalyzed ring expansion reaction of (Z)-1-(1,3-butadienyl)cyclobutanols with aryl iodides. stereospecific synthesis of (Z)-2-(3-aryl-1-propenyl)cyclopentanones.
    Yoshida M; Sugimoto K; Ihara M
    Org Lett; 2004 Jun; 6(12):1979-82. PubMed ID: 15176798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium-catalyzed three-component cascade cyclization reaction of bisallenes with propargylic carbonates and organoboronic acids: efficient construction of cis-fused bicyclo[4.3.0]nonenes.
    Shu W; Jia G; Ma S
    Angew Chem Int Ed Engl; 2009; 48(15):2788-91. PubMed ID: 19280620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-catalyzed carboannulation of propargylic carbonates and nucleophiles to 2-substituted indenes.
    Guo LN; Duan XH; Bi HP; Liu XY; Liang YM
    J Org Chem; 2007 Feb; 72(4):1538-40. PubMed ID: 17288401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-catalyzed tandem reaction of yne-propargylic carbonates with boronic acids: a simple method for the synthesis of fused aromatic rings through allene-mediated electrocyclization.
    Wang F; Tong X; Cheng J; Zhang Z
    Chemistry; 2004 Oct; 10(21):5338-44. PubMed ID: 15378726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palladium-catalyzed cross-coupling reaction of triorganoindium reagents with propargylic esters.
    Riveiros R; Rodríguez D; Pérez Sestelo J; Sarandeses LA
    Org Lett; 2006 Mar; 8(7):1403-6. PubMed ID: 16562902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium pincer complex-catalyzed trimethyltin substitution of functionalized propargylic substrates. An efficient route to propargyl- and allenyl-stannanes.
    Kjellgren J; Sundén H; Szabó KJ
    J Am Chem Soc; 2004 Jan; 126(2):474-5. PubMed ID: 14719938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium-catalyzed regioselective cyclopropanating allenylation of (2,3-butadienyl)malonates with propargylic carbonates and their application to synthesize cyclopentenones.
    Shu W; Jia G; Ma S
    Org Lett; 2009 Jan; 11(1):117-20. PubMed ID: 19053848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium-catalyzed synthesis of indene derivatives via propargylic carbonates with in situ generated organozinc compounds.
    Guan ZH; Ren ZH; Zhao LB; Liang YM
    Org Biomol Chem; 2008 Mar; 6(6):1040-5. PubMed ID: 18327329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.