These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Protein engineering from "scratch" is maturing. Höhne M; Bornscheuer UT Angew Chem Int Ed Engl; 2014 Jan; 53(5):1200-2. PubMed ID: 24339163 [TBL] [Abstract][Full Text] [Related]
4. An exciting but challenging road ahead for computational enzyme design. Baker D Protein Sci; 2010 Oct; 19(10):1817-9. PubMed ID: 20717908 [No Abstract] [Full Text] [Related]
5. Beyond directed evolution--semi-rational protein engineering and design. Lutz S Curr Opin Biotechnol; 2010 Dec; 21(6):734-43. PubMed ID: 20869867 [TBL] [Abstract][Full Text] [Related]
6. Enzyme (re)design: lessons from natural evolution and computation. Gerlt JA; Babbitt PC Curr Opin Chem Biol; 2009 Feb; 13(1):10-8. PubMed ID: 19237310 [TBL] [Abstract][Full Text] [Related]
9. Strategies for the discovery and engineering of enzymes for biocatalysis. Davids T; Schmidt M; Böttcher D; Bornscheuer UT Curr Opin Chem Biol; 2013 Apr; 17(2):215-20. PubMed ID: 23523243 [TBL] [Abstract][Full Text] [Related]
10. Computational biochemistry: old enzymes, new tricks. Ghirlanda G Nature; 2008 May; 453(7192):164-6. PubMed ID: 18464727 [No Abstract] [Full Text] [Related]
11. Representing structure-function relationships in mechanistically diverse enzyme superfamilies. Pegg SC; Brown S; Ojha S; Huang CC; Ferrin TE; Babbitt PC Pac Symp Biocomput; 2005; ():358-69. PubMed ID: 15759641 [TBL] [Abstract][Full Text] [Related]
12. Progress in computational protein design. Lippow SM; Tidor B Curr Opin Biotechnol; 2007 Aug; 18(4):305-11. PubMed ID: 17644370 [TBL] [Abstract][Full Text] [Related]
13. Computational tools for enzyme improvement: why everyone can - and should - use them. Ebert MC; Pelletier JN Curr Opin Chem Biol; 2017 Apr; 37():89-96. PubMed ID: 28231515 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in engineering proteins for biocatalysis. Li Y; Cirino PC Biotechnol Bioeng; 2014 Jul; 111(7):1273-87. PubMed ID: 24802032 [TBL] [Abstract][Full Text] [Related]
15. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Siegel JB; Zanghellini A; Lovick HM; Kiss G; Lambert AR; St Clair JL; Gallaher JL; Hilvert D; Gelb MH; Stoddard BL; Houk KN; Michael FE; Baker D Science; 2010 Jul; 329(5989):309-13. PubMed ID: 20647463 [TBL] [Abstract][Full Text] [Related]
16. Enzyme redesign. Penning TM; Jez JM Chem Rev; 2001 Oct; 101(10):3027-46. PubMed ID: 11710061 [No Abstract] [Full Text] [Related]
17. Rational and Semirational Protein Design. Korendovych IV Methods Mol Biol; 2018; 1685():15-23. PubMed ID: 29086301 [TBL] [Abstract][Full Text] [Related]
18. Engineering proteinase K using machine learning and synthetic genes. Liao J; Warmuth MK; Govindarajan S; Ness JE; Wang RP; Gustafsson C; Minshull J BMC Biotechnol; 2007 Mar; 7():16. PubMed ID: 17386103 [TBL] [Abstract][Full Text] [Related]
19. Directed enzyme evolution and selections for catalysis based on product formation. Jestin JL; Kaminski PA J Biotechnol; 2004 Sep; 113(1-3):85-103. PubMed ID: 15380650 [TBL] [Abstract][Full Text] [Related]
20. Enzyme optimization: moving from blind evolution to statistical exploration of sequence-function space. Fox RJ; Huisman GW Trends Biotechnol; 2008 Mar; 26(3):132-8. PubMed ID: 18222559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]