BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12943852)

  • 1. Recent developments in pyridine nucleotide regeneration.
    van der Donk WA; Zhao H
    Curr Opin Biotechnol; 2003 Aug; 14(4):421-6. PubMed ID: 12943852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of nicotinamide cofactors for use in organic synthesis.
    Chenault HK; Whitesides GM
    Appl Biochem Biotechnol; 1987 Mar; 14(2):147-97. PubMed ID: 3304160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
    Weckbecker A; Gröger H; Hummel W
    Adv Biochem Eng Biotechnol; 2010; 120():195-242. PubMed ID: 20182929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approaches to NAD(P)H regeneration in the biosynthesis systems.
    Han L; Liang B
    World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH oxidase from Lactobacillus reuteri: A versatile enzyme for oxidized cofactor regeneration.
    Gao H; Li J; Sivakumar D; Kim TS; Patel SKS; Kalia VC; Kim IW; Zhang YW; Lee JK
    Int J Biol Macromol; 2019 Feb; 123():629-636. PubMed ID: 30447371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration.
    Johannes TW; Woodyer RD; Zhao H
    Appl Environ Microbiol; 2005 Oct; 71(10):5728-34. PubMed ID: 16204481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals.
    Xiao Z; Lv C; Gao C; Qin J; Ma C; Liu Z; Liu P; Li L; Xu P
    PLoS One; 2010 Jan; 5(1):e8860. PubMed ID: 20126645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coenzymatic properties of low molecular-weight and macromolecular N6-derivatives of NAD+ and NADP+ with dehydrogenases of interest for organic synthesis.
    Ottolina G; Carrea G; Riva S; Bückmann AF
    Enzyme Microb Technol; 1990 Aug; 12(8):596-602. PubMed ID: 1366782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis.
    Chadha A; Padhi SK; Stella S; Venkataraman S; Saravanan T
    Org Biomol Chem; 2024 Jan; 22(2):228-251. PubMed ID: 38050738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetically encoded tool for manipulation of NADP
    Cracan V; Titov DV; Shen H; Grabarek Z; Mootha VK
    Nat Chem Biol; 2017 Oct; 13(10):1088-1095. PubMed ID: 28805804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase.
    Woodyer R; van der Donk WA; Zhao H
    Comb Chem High Throughput Screen; 2006 May; 9(4):237-45. PubMed ID: 16724915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral products from non-pyridine nucleotide-dependent reductases and methods for NAD(P)H regeneration.
    Simon H; Günther H; Bader J; Neumann S
    Ciba Found Symp; 1985; 111():97-111. PubMed ID: 3893942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Strategy to solve cofactor issues in oxidoreductase catalyzed biocatalytic applications].
    Jiang J; Wu X; Chen Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Apr; 28(4):410-9. PubMed ID: 22803391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.