These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12944259)

  • 1. Concerted simulations reveal how peroxidase compound III formation results in cellular oscillations.
    Gabdoulline RR; Kummer U; Olsen LF; Wade RC
    Biophys J; 2003 Sep; 85(3):1421-8. PubMed ID: 12944259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational, pulse-radiolytic, and structural investigations of lysine-136 and its role in the electrostatic triad of human Cu,Zn superoxide dismutase.
    Fisher CL; Cabelli DE; Hallewell RA; Beroza P; Lo TP; Getzoff ED; Tainer JA
    Proteins; 1997 Sep; 29(1):103-12. PubMed ID: 9294870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase.
    Bordo D; Matak D; Djinovic-Carugo K; Rosano C; Pesce A; Bolognesi M; Stroppolo ME; Falconi M; Battistoni A; Desideri A
    J Mol Biol; 1999 Jan; 285(1):283-96. PubMed ID: 9878406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis.
    Fisher CL; Cabelli DE; Tainer JA; Hallewell RA; Getzoff ED
    Proteins; 1994 May; 19(1):24-34. PubMed ID: 8066083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site.
    Polticelli F; Falconi M; O'Neill P; Petruzelli R; Galtieri A; Lania A; Calabrese L; Rotilio G; Desideri A
    Arch Biochem Biophys; 1994 Jul; 312(1):22-30. PubMed ID: 8031131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme.
    Stroppolo ME; Sette M; O'Neill P; Polizio F; Cambria MT; Desideri A
    Biochemistry; 1998 Sep; 37(35):12287-92. PubMed ID: 9724543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic studies of the oscillatory dynamics in the peroxidase-oxidase reaction catalyzed by four different peroxidases.
    Valeur KR; Olsen LF
    Biochim Biophys Acta; 1996 Apr; 1289(3):377-84. PubMed ID: 8620022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide-dependent oxidation of melatonin by myeloperoxidase.
    Ximenes VF; Silva SO; Rodrigues MR; Catalani LH; Maghzal GJ; Kettle AJ; Campa A
    J Biol Chem; 2005 Nov; 280(46):38160-9. PubMed ID: 16148002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin activates the peroxidase-oxidase reaction and promotes oscillations.
    Olsen LF; Lunding A; Lauritsen FR; Allegra M
    Biochem Biophys Res Commun; 2001 Jun; 284(4):1071-6. PubMed ID: 11409903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase.
    Stroppolo ME; Pesce A; D'Orazio M; O'Neill P; Bordo D; Rosano C; Milani M; Battistoni A; Bolognesi M; Desideri A
    J Mol Biol; 2001 May; 308(3):555-63. PubMed ID: 11327787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of melatonin-induced oscillations in the peroxidase-oxidase reaction.
    Olsen LF; Lunding A; Kummer U
    Arch Biochem Biophys; 2003 Feb; 410(2):287-95. PubMed ID: 12573289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.
    Wade RC; Gabdoulline RR; Lüdemann SK; Lounnas V
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5942-9. PubMed ID: 9600896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single mutation at the intersubunit interface confers extra efficiency to Cu,Zn superoxide dismutase.
    Stroppolo ME; Pesce A; Falconi M; O'Neill P; Bolognesi M; Desideri A
    FEBS Lett; 2000 Oct; 483(1):17-20. PubMed ID: 11033348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superefficient enzymes.
    Stroppolo ME; Falconi M; Caccuri AM; Desideri A
    Cell Mol Life Sci; 2001 Sep; 58(10):1451-60. PubMed ID: 11693526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicarbonate-dependent peroxidase activity of human Cu,Zn-superoxide dismutase induces covalent aggregation of protein: intermediacy of tryptophan-derived oxidation products.
    Zhang H; Andrekopoulos C; Joseph J; Chandran K; Karoui H; Crow JP; Kalyanaraman B
    J Biol Chem; 2003 Jun; 278(26):24078-89. PubMed ID: 12686560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of the oscillatory metabolism of activated neutrophils.
    Olsen LF; Kummer U; Kindzelskii AL; Petty HR
    Biophys J; 2003 Jan; 84(1):69-81. PubMed ID: 12524266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback loops for Shil'nikov chaos: The peroxidase-oxidase reaction.
    Sensse A; Hauser MJ; Eiswirth M
    J Chem Phys; 2006 Jul; 125(1):014901. PubMed ID: 16863327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase.
    Bourne Y; Redford SM; Steinman HM; Lepock JR; Tainer JA; Getzoff ED
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12774-9. PubMed ID: 8917495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the electrostatic loop charged residues in Cu,Zn superoxide dismutase.
    Polticelli F; Battistoni A; O'Neill P; Rotilio G; Desideri A
    Protein Sci; 1998 Nov; 7(11):2354-8. PubMed ID: 9828001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.