These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 12944280)

  • 1. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts.
    Gandhavadi M; Allende D; Vidal A; Simon SA; McIntosh TJ
    Biophys J; 2002 Mar; 82(3):1469-82. PubMed ID: 11867462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transbilayer peptide sorting between raft and nonraft bilayers: comparisons of detergent extraction and confocal microscopy.
    Vidal A; McIntosh TJ
    Biophys J; 2005 Aug; 89(2):1102-8. PubMed ID: 15908585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray diffraction to determine the thickness of raft and nonraft bilayers.
    McIntosh TJ
    Methods Mol Biol; 2007; 398():221-30. PubMed ID: 18214383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization.
    Tong J; Briggs MM; Mlaver D; Vidal A; McIntosh TJ
    Biophys J; 2009 Nov; 97(9):2493-502. PubMed ID: 19883592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton.
    Heerklotz H; Szadkowska H; Anderson T; Seelig J
    J Mol Biol; 2003 Jun; 329(4):793-9. PubMed ID: 12787678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brij detergents reveal new aspects of membrane microdomain in erythrocytes.
    Casadei BR; De Oliveira Carvalho P; Riske KA; Barbosa Rde M; De Paula E; Domingues CC
    Mol Membr Biol; 2014 Sep; 31(6):195-205. PubMed ID: 25222860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing detergent resistant domains in model membranes with atomic force microscopy.
    Rinia HA; Snel MM; van der Eerden JP; de Kruijff B
    FEBS Lett; 2001 Jul; 501(1):92-6. PubMed ID: 11457463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic perturbation of phosphatidylcholine/sphingomyelin bilayers by diacylglycerol and cholesterol.
    Armstrong DL; Borchardt DB; Zidovetzki R
    Biochem Biophys Res Commun; 2002 Aug; 296(4):806-12. PubMed ID: 12200119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine.
    Arnulphi C; Sot J; García-Pacios M; Arrondo JL; Alonso A; Goñi FM
    Biophys J; 2007 Nov; 93(10):3504-14. PubMed ID: 17675347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 2004 Biophysical Society-Avanti Award in Lipids address: roles of bilayer structure and elastic properties in peptide localization in membranes.
    McIntosh TJ
    Chem Phys Lipids; 2004 Jul; 130(2):83-98. PubMed ID: 15172825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study.
    Shaikh SR; Dumaual AC; Castillo A; LoCascio D; Siddiqui RA; Stillwell W; Wassall SR
    Biophys J; 2004 Sep; 87(3):1752-66. PubMed ID: 15345554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triton promotes domain formation in lipid raft mixtures.
    Heerklotz H
    Biophys J; 2002 Nov; 83(5):2693-701. PubMed ID: 12414701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isolation and structure of membrane lipid rafts from rat brain.
    Chen X; Morris R; Lawrence MJ; Quinn PJ
    Biochimie; 2007 Feb; 89(2):192-6. PubMed ID: 16935406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.
    Quinn PJ
    Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.