These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 12944392)
21. The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans. Kho MF; Bellier A; Balasubramani V; Hu Y; Hsu W; Nielsen-LeRoux C; McGillivray SM; Nizet V; Aroian RV PLoS One; 2011; 6(12):e29122. PubMed ID: 22216181 [TBL] [Abstract][Full Text] [Related]
22. The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Luo H; Xiong J; Zhou Q; Xia L; Yu Z Appl Microbiol Biotechnol; 2013 Dec; 97(23):10135-42. PubMed ID: 24100681 [TBL] [Abstract][Full Text] [Related]
23. Aminopeptidase MNP-1 triggers intestine protease production by activating daf-16 nuclear location to degrade pore-forming toxins in Caenorhabditis elegans. Chen F; Pang C; Zheng Z; Zhou W; Guo Z; Xiao D; Du H; Bravo A; Soberón M; Sun M; Peng D PLoS Pathog; 2023 Jul; 19(7):e1011507. PubMed ID: 37440595 [TBL] [Abstract][Full Text] [Related]
24. Molecular Cloning, Expression, and Identification of Bre Genes Involved in Glycosphingolipids Synthesis in Helicoverpa armigera (Lepidoptera: Noctuidae). Zhang D; Xiao Y; Hussain Dhiloo K; Soberon M; Bravo A; Wu K J Econ Entomol; 2016 May; 109(3):1415-1423. PubMed ID: 27190043 [TBL] [Abstract][Full Text] [Related]
25. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Soberón M; Portugal L; Garcia-Gómez BI; Sánchez J; Onofre J; Gómez I; Pacheco S; Bravo A Insect Biochem Mol Biol; 2018 Feb; 93():66-78. PubMed ID: 29269111 [TBL] [Abstract][Full Text] [Related]
27. Bacillus thuringiensis crystal proteins that target nematodes. Wei JZ; Hale K; Carta L; Platzer E; Wong C; Fang SC; Aroian RV Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2760-5. PubMed ID: 12598644 [TBL] [Abstract][Full Text] [Related]
28. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Gómez I; Pardo-López L; Muñoz-Garay C; Fernandez LE; Pérez C; Sánchez J; Soberón M; Bravo A Peptides; 2007 Jan; 28(1):169-73. PubMed ID: 17145116 [TBL] [Abstract][Full Text] [Related]
29. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1). Zhang F; Peng D; Cheng C; Zhou W; Ju S; Wan D; Yu Z; Shi J; Deng Y; Wang F; Ye X; Hu Z; Lin J; Ruan L; Sun M PLoS Pathog; 2016 Jan; 12(1):e1005389. PubMed ID: 26795495 [TBL] [Abstract][Full Text] [Related]
30. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. Pardo-López L; Soberón M; Bravo A FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421 [TBL] [Abstract][Full Text] [Related]
31. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Portugal L; Gringorten JL; Caputo GF; Soberón M; Muñoz-Garay C; Bravo A Peptides; 2014 Mar; 53():292-9. PubMed ID: 24189038 [TBL] [Abstract][Full Text] [Related]
32. Use of RNAi as a preliminary tool for screening putative receptors of nematicidal toxins from Bacillus thuringiensis. García-Montelongo M; González-Villarreal SE; Del Rincón-Castro MC; Ibarra JE Arch Microbiol; 2021 May; 203(4):1649-1656. PubMed ID: 33432376 [TBL] [Abstract][Full Text] [Related]
33. A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection. Ideo H; Fukushima K; Gengyo-Ando K; Mitani S; Dejima K; Nomura K; Yamashita K J Biol Chem; 2009 Sep; 284(39):26493-501. PubMed ID: 19635802 [TBL] [Abstract][Full Text] [Related]
34. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. Xie R; Zhuang M; Ross LS; Gomez I; Oltean DI; Bravo A; Soberon M; Gill SS J Biol Chem; 2005 Mar; 280(9):8416-25. PubMed ID: 15572369 [TBL] [Abstract][Full Text] [Related]
35. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Huffman DL; Abrami L; Sasik R; Corbeil J; van der Goot FG; Aroian RV Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10995-1000. PubMed ID: 15256590 [TBL] [Abstract][Full Text] [Related]
36. Nematode-specific cadherin CDH-8 acts as a receptor for Cry5B toxin in Caenorhabditis elegans. Peng D; Wan D; Cheng C; Ye X; Sun M Appl Microbiol Biotechnol; 2018 Apr; 102(8):3663-3673. PubMed ID: 29502179 [TBL] [Abstract][Full Text] [Related]
38. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis. Sheppard AE; Nakad R; Saebelfeld M; Masche AC; Dierking K; Schulenburg H J Invertebr Pathol; 2016 Jan; 133():34-40. PubMed ID: 26592941 [TBL] [Abstract][Full Text] [Related]
39. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor. Obata F; Tanaka S; Kashio S; Tsujimura H; Sato R; Miura M BMC Biol; 2015 Jul; 13():48. PubMed ID: 26152191 [TBL] [Abstract][Full Text] [Related]
40. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]