BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 12944485)

  • 1. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes.
    Cen B; Selvaraj A; Burgess RC; Hitzler JK; Ma Z; Morris SW; Prywes R
    Mol Cell Biol; 2003 Sep; 23(18):6597-608. PubMed ID: 12944485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression.
    Cen B; Selvaraj A; Prywes R
    J Cell Biochem; 2004 Sep; 93(1):74-82. PubMed ID: 15352164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation.
    Selvaraj A; Prywes R
    J Biol Chem; 2003 Oct; 278(43):41977-87. PubMed ID: 14565952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent.
    Selvaraj A; Prywes R
    BMC Mol Biol; 2004 Aug; 5():13. PubMed ID: 15329155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity.
    Kalita K; Kharebava G; Zheng JJ; Hetman M
    J Neurosci; 2006 Sep; 26(39):10020-32. PubMed ID: 17005865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification.
    Nakagawa K; Kuzumaki N
    Genes Cells; 2005 Aug; 10(8):835-50. PubMed ID: 16098147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcriptional regulator megakaryoblastic leukemia-1 mediates serum response factor-independent activation of tenascin-C transcription by mechanical stress.
    Asparuhova MB; Ferralli J; Chiquet M; Chiquet-Ehrismann R
    FASEB J; 2011 Oct; 25(10):3477-88. PubMed ID: 21705668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OTT-MAL is a deregulated activator of serum response factor-dependent gene expression.
    Descot A; Rex-Haffner M; Courtois G; Bluteau D; Menssen A; Mercher T; Bernard OA; Treisman R; Posern G
    Mol Cell Biol; 2008 Oct; 28(20):6171-81. PubMed ID: 18710951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear translocation of the SRF co-activator MAL in cortical neurons: role of RhoA signalling.
    Tabuchi A; Estevez M; Henderson JA; Marx R; Shiota J; Nakano H; Baraban JM
    J Neurochem; 2005 Jul; 94(1):169-80. PubMed ID: 15953360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization.
    Muehlich S; Wang R; Lee SM; Lewis TC; Dai C; Prywes R
    Mol Cell Biol; 2008 Oct; 28(20):6302-13. PubMed ID: 18694962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors.
    Lockman K; Hinson JS; Medlin MD; Morris D; Taylor JM; Mack CP
    J Biol Chem; 2004 Oct; 279(41):42422-30. PubMed ID: 15292266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth hormone regulates ternary complex factors and serum response factor associated with the c-fos serum response element.
    Liao J; Hodge C; Meyer D; Ho PS; Rosenspire K; Schwartz J
    J Biol Chem; 1997 Oct; 272(41):25951-8. PubMed ID: 9325329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of serum response factor (SRF) with the Elk-1 B box inhibits RhoA-actin signaling to SRF and potentiates transcriptional activation by Elk-1.
    Murai K; Treisman R
    Mol Cell Biol; 2002 Oct; 22(20):7083-92. PubMed ID: 12242287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of SRF-dependent gene expression by association of SPT16 with MKL1.
    Kihara T; Kano F; Murata M
    Exp Cell Res; 2008 Feb; 314(3):629-37. PubMed ID: 18036521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation and repression of cellular immediate early genes by serum response factor cofactors.
    Lee SM; Vasishtha M; Prywes R
    J Biol Chem; 2010 Jul; 285(29):22036-49. PubMed ID: 20466732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells.
    Du KL; Chen M; Li J; Lepore JJ; Mericko P; Parmacek MS
    J Biol Chem; 2004 Apr; 279(17):17578-86. PubMed ID: 14970199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation.
    Smith EC; Teixeira AM; Chen RC; Wang L; Gao Y; Hahn KL; Krause DS
    Blood; 2013 Feb; 121(7):1094-101. PubMed ID: 23243284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β.
    Sandbo N; Lau A; Kach J; Ngam C; Yau D; Dulin NO
    Am J Physiol Lung Cell Mol Physiol; 2011 Nov; 301(5):L656-66. PubMed ID: 21856814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of growth factor signals at the c-fos serum response element.
    Price MA; Hill C; Treisman R
    Philos Trans R Soc Lond B Biol Sci; 1996 Apr; 351(1339):551-9. PubMed ID: 8735278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two pathways for serum regulation of the c-fos serum response element require specific sequence elements and a minimal domain of serum response factor.
    Johansen FE; Prywes R
    Mol Cell Biol; 1994 Sep; 14(9):5920-8. PubMed ID: 8065325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.