These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1294471)

  • 1. Reconstitution of denatured E. coli alkaline phosphatase with E. coli ribosome.
    Das B; Gupta CD
    Indian J Biochem Biophys; 1992 Dec; 29(6):512-5. PubMed ID: 1294471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivation of denatured fungal glucose 6-phosphate dehydrogenase and E. coli alkaline phosphatase with E. coli ribosome.
    Das B; Chattopadhyay S; Das Gupta C
    Biochem Biophys Res Commun; 1992 Mar; 183(2):774-80. PubMed ID: 1312841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess nucleoside triphosphates (or zinc) allow recovery of alkaline phosphatase activity following refolding under reducing conditions.
    Ghosh N; Sarkar SN; Roy KB
    Biochemistry; 1998 Nov; 37(44):15542-7. PubMed ID: 9799518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Isolation and properties of immobilized alkaline phosphatase from E. coli].
    Zagrebel'nyĭ SN; Oreshkova SF
    Prikl Biokhim Mikrobiol; 1987; 23(3):303-8. PubMed ID: 3303013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic aspects of alkaline phosphatase refolding in the presence of alpha-cyclodextrin.
    Yazdanparast R; Khodagholi F
    Arch Biochem Biophys; 2006 Feb; 446(1):11-9. PubMed ID: 16386233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ala-161-->Thr substitution in Escherichia coli alkaline phosphatase does not result in loss of enzymatic activity although the homologous mutation in humans causes hypophosphatasia.
    Chaidaroglou A; Kantrowitz ER
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1104-9. PubMed ID: 8323535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a T81A mutation at the subunit interface on catalytic properties of alkaline phosphatase from Escherichia coli.
    Orhanović S; Bucević-Popović V; Pavela-Vrancic M; Vujaklija D; Gamulin V
    Int J Biol Macromol; 2006 Dec; 40(1):54-8. PubMed ID: 16859742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli.
    Gudjónsdóttir K; Asgeirsson B
    FEBS J; 2008 Jan; 275(1):117-27. PubMed ID: 18067583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the E. coli alkaline phosphatase precursor with model phospholipid membranes.
    Mikhaleva NI; Kalinin AE; Molotkovsky YuG ; Nesmeyanova MA
    Biochemistry (Mosc); 1997 Feb; 62(2):184-90. PubMed ID: 9159872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of temperature on intramolecular dynamics and conformational state of bacterial alkaline phosphatase].
    Mazhul' VM; Kananovich SZh
    Biofizika; 2006; 51(3):418-23. PubMed ID: 16808339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of redox environment on the in vitro and in vivo folding of RTEM-1 beta-lactamase and Escherichia coli alkaline phosphatase.
    Walker KW; Gilbert HF
    J Biol Chem; 1994 Nov; 269(45):28487-93. PubMed ID: 7961790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transfer studies of cell permeabilization and recovery of alkaline phosphatase from Escherichia coli by reverse micellar solutions.
    Bansal-Mutalik R; Gaikar VG
    Biotechnol Prog; 2004; 20(4):1121-7. PubMed ID: 15296438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562.
    Garcia P; Bruix M; Rico M; Ciofi-Baffoni S; Banci L; Ramachandra Shastry MC; Roder H; de Lumley Woodyear T; Johnson CM; Fersht AR; Barker PD
    J Mol Biol; 2005 Feb; 346(1):331-44. PubMed ID: 15663948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hysteresis on heating and cooling of E. coli alkaline phosphatase.
    Uto IS; Brewer JM
    Protein Pept Lett; 2008; 15(5):516-20. PubMed ID: 18537743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A moderately thermostable alkaline phosphatase from Geobacillus thermodenitrificans T2: cloning, expression and biochemical characterization.
    Zhang Y; Ji C; Zhang X; Yang Z; Peng J; Qiu R; Xie Y; Mao Y
    Appl Biochem Biotechnol; 2008 Oct; 151(1):81-92. PubMed ID: 18365148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Alkaline phosphatase linked with ribosomes in Escherichia coli].
    Nesmeianova MA; Bogdanov AA; Prokof'ev MA
    Biokhimiia; 1965; 30(3):463-70. PubMed ID: 5332581
    [No Abstract]   [Full Text] [Related]  

  • 19. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H; Yamamoto H; Uchiumi T; Wada A
    Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.