These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 12945047)

  • 1. Anatomy of specific interactions between lambda repressor and operator DNA.
    Oobatake M; Kono H; Wang Y; Sarai A
    Proteins; 2003 Oct; 53(1):33-43. PubMed ID: 12945047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex.
    Zacharias M; Luty BA; Davis ME; McCammon JA
    J Mol Biol; 1994 May; 238(3):455-65. PubMed ID: 8176736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy calculations for the relative binding affinity between DNA and lambda-repressor.
    Saito M; Sarai A
    Proteins; 2003 Aug; 52(2):129-36. PubMed ID: 12833537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor.
    Huang YT; Rusinova E; Ross JB; Senear DF
    J Mol Biol; 1997 Mar; 267(2):403-17. PubMed ID: 9096234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of lambda-Cro bound to a consensus operator at 3.0 A resolution.
    Albright RA; Matthews BW
    J Mol Biol; 1998 Jul; 280(1):137-51. PubMed ID: 9653037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled energetics of lambda cro repressor self-assembly and site-specific DNA operator binding II: cooperative interactions of cro dimers.
    Darling PJ; Holt JM; Ackers GK
    J Mol Biol; 2000 Sep; 302(3):625-38. PubMed ID: 10986123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arc repressor-operator DNA interactions and contribution of Phe10 to binding specificity.
    Dostál L; Misselwitz R; Welfle H
    Biochemistry; 2005 Jun; 44(23):8387-96. PubMed ID: 15938628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-mediated assembly of weakly interacting DNA-binding protein subunits: in vitro recruitment of phage 434 repressor and yeast GCN4 DNA-binding domains.
    Guarnaccia C; Raman B; Zahariev S; Simoncsits A; Pongor S
    Nucleic Acids Res; 2004; 32(17):4992-5002. PubMed ID: 15388801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation reveals sequence-intrinsic and protein-induced geometrical features of the OL1 DNA operator.
    Kombo DC; McConnell KJ; Young MA; Beveridge DL
    Biopolymers; 2001 Oct; 59(4):205-25. PubMed ID: 11473347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided discrimination between active and inactive mutants of the N-terminal domain of the bacteriophage lambda repressor.
    Kombo DC; Némethy G; Gibson KD; Rackovsky S; Scheraga HA
    J Mol Biol; 1996 Mar; 256(3):517-32. PubMed ID: 8604135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repertoire selection of variant single-chain Cro: toward directed DNA-binding specificity of helix-turn-helix proteins.
    Nilsson MT; Widersten M
    Biochemistry; 2004 Sep; 43(38):12038-47. PubMed ID: 15379544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching DNA-binding specificity by unnatural amino acid substitution.
    Maiti A; Roy S
    Nucleic Acids Res; 2005; 33(18):5896-903. PubMed ID: 16224104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of repressor/operator recognition from the structure of the trp operator binding site.
    Shakked Z; Guzikevich-Guerstein G; Frolow F; Rabinovich D; Joachimiak A; Sigler PB
    Nature; 1994 Mar; 368(6470):469-73. PubMed ID: 8133895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-energy component analysis of 40 protein-DNA complexes: a consensus view on the thermodynamics of binding at the molecular level.
    Jayaram B; McConnell K; Dixit SB; Das A; Beveridge DL
    J Comput Chem; 2002 Jan; 23(1):1-14. PubMed ID: 11913374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linkage between operator binding and dimer to octamer self-assembly of bacteriophage lambda cI repressor.
    Rusinova E; Ross JB; Laue TM; Sowers LC; Senear DF
    Biochemistry; 1997 Oct; 36(42):12994-3003. PubMed ID: 9335560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA conformational changes associated with the cooperative binding of cI-repressor of bacteriophage lambda to OR.
    Strahs D; Brenowitz M
    J Mol Biol; 1994 Dec; 244(5):494-510. PubMed ID: 7990137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation in solvent of the bacteriophage 434 cI repressor protein DNA binding domain amino acids (R1-69) in complex with its cognate operator (OR1) DNA sequence.
    Harris LF; Sullivan MR; Popken-Harris PD
    J Biomol Struct Dyn; 1999 Aug; 17(1):1-17. PubMed ID: 10496417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt effects on protein-DNA interactions. The lambda cI repressor and EcoRI endonuclease.
    Misra VK; Hecht JL; Sharp KA; Friedman RA; Honig B
    J Mol Biol; 1994 Apr; 238(2):264-80. PubMed ID: 8158653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators.
    Simoncsits A; Chen J; Percipalle P; Wang S; Törö I; Pongor S
    J Mol Biol; 1997 Mar; 267(1):118-31. PubMed ID: 9096211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic analysis of Lac repressor bound to natural operator O1.
    Bell CE; Lewis M
    J Mol Biol; 2001 Oct; 312(5):921-6. PubMed ID: 11580238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.