These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 12945056)
1. Conformational interconversion in compstatin probed with molecular dynamics simulations. Mallik B; Lambris JD; Morikis D Proteins; 2003 Oct; 53(1):130-41. PubMed ID: 12945056 [TBL] [Abstract][Full Text] [Related]
2. Conformational analysis of compstatin analogues with molecular dynamics simulations in explicit water. Tamamis P; Skourtis SS; Morikis D; Lambris JD; Archontis G J Mol Graph Model; 2007 Sep; 26(2):571-80. PubMed ID: 17498990 [TBL] [Abstract][Full Text] [Related]
3. Understanding the structural characteristics of compstatin by conformational space annealing. Song MK; Kim SY; Lee J Biophys Chem; 2005 Apr; 115(2-3):201-7. PubMed ID: 15752605 [TBL] [Abstract][Full Text] [Related]
4. Conformational analysis of furanoid epsilon-sugar amino acid containing cyclic peptides by NMR spectroscopy, molecular dynamics simulation, and X-ray crystallography: evidence for a novel turn structure. van Well RM; Marinelli L; Altona C; Erkelens K; Siegal G; van Raaij M; Llamas-Saiz AL; Kessler H; Novellino E; Lavecchia A; van Boom JH; Overhand M J Am Chem Soc; 2003 Sep; 125(36):10822-9. PubMed ID: 12952461 [TBL] [Abstract][Full Text] [Related]
5. Cyclic beta-helical/beta-hairpin D,L-alpha-peptide: study of its folding properties and structure refinement using molecular dynamics. Meier K; van Gunsteren WF J Phys Chem A; 2010 Feb; 114(4):1852-9. PubMed ID: 20055405 [TBL] [Abstract][Full Text] [Related]
6. beta-hairpin folding and stability: molecular dynamics simulations of designed peptides in aqueous solution. Santiveri CM; Jiménez MA; Rico M; Van Gunsteren WF; Daura X J Pept Sci; 2004 Sep; 10(9):546-65. PubMed ID: 15473263 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the conformational space of a triple-stranded beta-sheet forming peptide with molecular dynamics simulations. Soto P; Colombo G Proteins; 2004 Dec; 57(4):734-46. PubMed ID: 15390268 [TBL] [Abstract][Full Text] [Related]
8. Interpreting NMR data for beta-peptides using molecular dynamics simulations. Trzesniak D; Glättli A; Jaun B; van Gunsteren WF J Am Chem Soc; 2005 Oct; 127(41):14320-9. PubMed ID: 16218626 [TBL] [Abstract][Full Text] [Related]
9. Diproline templates as folding nuclei in designed peptides. Conformational analysis of synthetic peptide helices containing amino terminal Pro-Pro segments. Rai R; Aravinda S; Kanagarajadurai K; Raghothama S; Shamala N; Balaram P J Am Chem Soc; 2006 Jun; 128(24):7916-28. PubMed ID: 16771506 [TBL] [Abstract][Full Text] [Related]
10. Design and NMR characterization of active analogues of compstatin containing non-natural amino acids. Mallik B; Katragadda M; Spruce LA; Carafides C; Tsokos CG; Morikis D; Lambris JD J Med Chem; 2005 Jan; 48(1):274-86. PubMed ID: 15634022 [TBL] [Abstract][Full Text] [Related]
11. Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/NMR study. Graf J; Nguyen PH; Stock G; Schwalbe H J Am Chem Soc; 2007 Feb; 129(5):1179-89. PubMed ID: 17263399 [TBL] [Abstract][Full Text] [Related]
12. A molecular dynamics study of the 41-56 beta-hairpin from B1 domain of protein G. Roccatano D; Amadei A; Di Nola A; Berendsen HJ Protein Sci; 1999 Oct; 8(10):2130-43. PubMed ID: 10548059 [TBL] [Abstract][Full Text] [Related]
13. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease. Patel S; Sasidhar YU J Pept Sci; 2007 Oct; 13(10):679-92. PubMed ID: 17787022 [TBL] [Abstract][Full Text] [Related]
14. Multiple loop conformations of peptides predicted by molecular dynamics simulations are compatible with nuclear magnetic resonance. Carstens H; Renner C; Milbradt AG; Moroder L; Tavan P Biochemistry; 2005 Mar; 44(12):4829-40. PubMed ID: 15779909 [TBL] [Abstract][Full Text] [Related]
15. The sequence TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase displays structural ambivalence and interconverts between alpha-helical and beta-hairpin conformations mediated by collapsed conformational states. Patel S; Balaji PV; Sasidhar YU J Pept Sci; 2007 May; 13(5):314-26. PubMed ID: 17437248 [TBL] [Abstract][Full Text] [Related]
16. Beta-hairpin conformation of fibrillogenic peptides: structure and alpha-beta transition mechanism revealed by molecular dynamics simulations. Daidone I; Simona F; Roccatano D; Broglia RA; Tiana G; Colombo G; Di Nola A Proteins; 2004 Oct; 57(1):198-204. PubMed ID: 15326604 [TBL] [Abstract][Full Text] [Related]
17. CD4 binding partially locks the bridging sheet in gp120 but leaves the beta2/3 strands flexible. Pan Y; Ma B; Nussinov R J Mol Biol; 2005 Jul; 350(3):514-27. PubMed ID: 15946678 [TBL] [Abstract][Full Text] [Related]
18. The beta-turn scaffold of tripeptide containing an azaphenylalanine residue. Lee HJ; Park HM; Lee KB Biophys Chem; 2007 Jan; 125(1):117-26. PubMed ID: 16890344 [TBL] [Abstract][Full Text] [Related]
19. Structure determination of a flexible cyclic peptide based on NMR and MD simulation 3J-coupling. Gattin Z; Zaugg J; van Gunsteren WF Chemphyschem; 2010 Mar; 11(4):830-5. PubMed ID: 20162655 [TBL] [Abstract][Full Text] [Related]
20. Reversible scaling of dihedral angle barriers during molecular dynamics to improve structure prediction of cyclic peptides. Riemann RN; Zacharias M J Pept Res; 2004 Apr; 63(4):354-64. PubMed ID: 15102053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]