BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 12945198)

  • 1. [Molecular mechanisms of catabolic repression in yeast].
    Stasyk OV; Sybirnyĭ AA
    Mikrobiol Z; 2003; 65(3):84-103. PubMed ID: 12945198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1.
    Heyken WT; Wagner C; Wittmann J; Albrecht A; Schüller HJ
    Yeast; 2003 Oct; 20(14):1177-88. PubMed ID: 14587102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae.
    Westergaard SL; Oliveira AP; Bro C; Olsson L; Nielsen J
    Biotechnol Bioeng; 2007 Jan; 96(1):134-45. PubMed ID: 16878332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in Saccharomyces cerevisiae.
    Ruhela A; Verma M; Edwards JS; Bhat PJ; Bhartiya S; Venkatesh KV
    FEBS Lett; 2004 Oct; 576(1-2):119-26. PubMed ID: 15474022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor.
    Heyken WT; Repenning A; Kumme J; Schüller HJ
    Mol Microbiol; 2005 May; 56(3):696-707. PubMed ID: 15819625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae.
    Avendaño A; Riego L; DeLuna A; Aranda C; Romero G; Ishida C; Vázquez-Acevedo M; Rodarte B; Recillas-Targa F; Valenzuela L; Zonszein S; González A
    Mol Microbiol; 2005 Jul; 57(1):291-305. PubMed ID: 15948967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human pancreatic beta-cell glucokinase: subcellular localization and glucose repression signalling function in the yeast cell.
    Riera A; Ahuatzi D; Herrero P; Garcia-Gimeno MA; Sanz P; Moreno F
    Biochem J; 2008 Oct; 415(2):233-9. PubMed ID: 18588509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergy of repression and silencing gradients along the chromosome.
    Ratna P; Scherrer S; Fleischli C; Becskei A
    J Mol Biol; 2009 Apr; 387(4):826-39. PubMed ID: 19233208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii.
    Alves-Araújo C; Hernandez-Lopez MJ; Prieto JA; Randez-Gil F; Sousa MJ
    Yeast; 2005 Feb; 22(3):165-75. PubMed ID: 15704215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sensu stricto yeasts.
    Rodrigues de Sousa H; Spencer-Martins I; Gonçalves P
    Yeast; 2004 Apr; 21(6):519-30. PubMed ID: 15116434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted.
    Usaite R; Nielsen J; Olsson L
    J Biotechnol; 2008 Jan; 133(1):73-81. PubMed ID: 17949842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae.
    Wang Z; Feng LS; Matskevich V; Venkataraman K; Parasuram P; Laity JH
    J Mol Biol; 2006 Apr; 357(4):1167-83. PubMed ID: 16483601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rpd3p relocation mediates a transcriptional response to rapamycin in yeast.
    Humphrey EL; Shamji AF; Bernstein BE; Schreiber SL
    Chem Biol; 2004 Mar; 11(3):295-9. PubMed ID: 15123258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome biogenesis: giant steps for a giant problem.
    Powers T
    Cell; 2004 Dec; 119(7):901-2. PubMed ID: 15620347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel dominant INO2c mutants with an Opi- phenotype.
    Gardenour KR; Levy J; Lopes JM
    Mol Microbiol; 2004 Jun; 52(5):1271-80. PubMed ID: 15165231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy.
    Stasyk OG; van Zutphen T; Ah Kang H; Stasyk OV; Veenhuis M; Sibirny AA
    FEMS Yeast Res; 2007 Oct; 7(7):1103-13. PubMed ID: 17854468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The early steps of glucose signalling in yeast.
    Gancedo JM
    FEMS Microbiol Rev; 2008 Jul; 32(4):673-704. PubMed ID: 18559076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-pronged genomic analysis reveals yeast cell-type regulation circuitry.
    Sprague GF
    Proc Natl Acad Sci U S A; 2005 Jan; 102(4):959-60. PubMed ID: 15657127
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.