These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12945590)

  • 1. Fluorescence lifetimes of protochlorophyllide in plants with different proportions of short-wavelength and long-wavelength protochlorophyllide spectral forms.
    Myśliwa-Kurdziel B; Amirjani MR; Strzałka K; Sundqvist C
    Photochem Photobiol; 2003 Aug; 78(2):205-12. PubMed ID: 12945590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of spectral forms of protochlorophyllide in the region 670-730 nm.
    Stadnichuk IN; Amirjani MR; Sundqvist C
    Photochem Photobiol Sci; 2005 Feb; 4(2):230-8. PubMed ID: 15696242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lifetimes and spectral properties of protochlorophyllide in organic solvents in relation to the respective parameters in vivo.
    Myśliwa-Kurdziel B; Kruk J; Strzałka K
    Photochem Photobiol; 2004 Jan; 79(1):62-7. PubMed ID: 14974717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of Pea.
    Seyedi M; Timko MP; Sundqvist C
    Plant Cell Physiol; 2001 Sep; 42(9):931-41. PubMed ID: 11577187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protochlorophyllide spectral forms.
    Amirjani MR
    Pak J Biol Sci; 2010 Jun; 13(12):563-76. PubMed ID: 21061907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early reactions of light-induced protochlorophyllide and chlorophyllide transformations analyzed in vivo at room temperature with a diode array spectrofluorometer.
    Böddi B; Popovic R; Franck F
    J Photochem Photobiol B; 2003 Jan; 69(1):31-9. PubMed ID: 12547494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions.
    Vitányi B; Kósa A; Solymosi K; Böddi B
    Physiol Plant; 2013 Jun; 148(2):307-15. PubMed ID: 23067197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological variability in the ratios of protochlorophyllide forms in leaves and epicotyls of dark-grown pea (Pisum sativum L.) seedlings (a statistical method to resolve complex spectra).
    Szenzenstein A; Kósa A; Böddi B
    J Photochem Photobiol B; 2008 Feb; 90(2):88-94. PubMed ID: 18178095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential regeneration of the NADPH: protochlorophyllide oxidoreductase oligomer complexes in pea epicotyls after bleaching.
    Szenzenstein A; Kósa A; Solymosi K; Sárvári E; Böddi B
    Physiol Plant; 2010 Jan; 138(1):102-12. PubMed ID: 20070845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carotenoid dependence of the protochlorophyllide to chlorophyllide phototransformation in dark-grown wheat seedlings.
    Yahubyan G; Minkov I; Sundqvist C
    J Photochem Photobiol B; 2001 Dec; 65(2-3):171-6. PubMed ID: 11809376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls.
    Erdei AL; Kósa A; Böddi B
    Photosynth Res; 2019 Apr; 140(1):93-102. PubMed ID: 30225812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protochlorophyllide in model systems--an approach to in vivo conditions.
    Mysliwa-Kurdziel B; Kruk J; Strzałka K
    Biophys Chem; 2013; 175-176():28-38. PubMed ID: 23524289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red light.
    Sineshchekov V; Belyaeva O; Sudnitsin A
    J Photochem Photobiol B; 2004 Mar; 74(1):47-54. PubMed ID: 15043846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial stages of angiosperm greening monitored by low-temperature fluorescence spectra and fluorescence lifetimes.
    Mysliwa-Kurdziel B; Stecka A; Strzalka K
    Methods Mol Biol; 2012; 875():231-9. PubMed ID: 22573443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new pathway of chlorophyll biosynthesis from long-wavelength protochlorophyllide Pchlide 686/676 in juvenile etiolated plants.
    Ignatov NV; Litvin FF
    Photosynth Res; 2002; 71(3):195-207. PubMed ID: 16228132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants.
    Schoefs B; Bertrand M; Funk C
    Photochem Photobiol; 2000 Nov; 72(5):660-8. PubMed ID: 11107852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase.
    Heyes DJ; Hardman SJ; Mansell D; Gardiner JM; Scrutton NS
    PLoS One; 2012; 7(9):e45642. PubMed ID: 23049830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of ligand binding and dimerization of NADPH:protochlorophyllide (Pchlide) oxidoreductase from pea (Pisum sativum L.) by structural analysis and simulations.
    Sameer H; Victor G; Katalin S; Henrik A
    Proteins; 2021 Oct; 89(10):1300-1314. PubMed ID: 34021929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two spectroscopically different short wavelength protochlorophyllide forms in pea epicotyls are both monomeric.
    Böddi B; Kis-Petik K; Kaposi AD; Fidy J; Sundqvist C
    Biochim Biophys Acta; 1998 Jul; 1365(3):531-540. PubMed ID: 9757084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early and late plastid development in response to chill stress and heat stress in wheat seedlings.
    Mohanty S; Tripathy BC
    Protoplasma; 2011 Oct; 248(4):725-36. PubMed ID: 21063735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.