These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 12945897)
1. Recognition of base-pairing by DNA polymerases during nucleotide incorporation: the properties of the mutagenic nucleotide dPTP alphaS. Harris VH; Smith CL; Cummins WJ; Hamilton AL; Hornby DP; Williams DM Org Biomol Chem; 2003 Jun; 1(12):2070-4. PubMed ID: 12945897 [TBL] [Abstract][Full Text] [Related]
2. The effect of tautomeric constant on the specificity of nucleotide incorporation during DNA replication: support for the rare tautomer hypothesis of substitution mutagenesis. Harris VH; Smith CL; Jonathan Cummins W; Hamilton AL; Adams H; Dickman M; Hornby DP; Williams DM J Mol Biol; 2003 Mar; 326(5):1389-401. PubMed ID: 12595252 [TBL] [Abstract][Full Text] [Related]
3. Single-base discrimination mediated by proofreading 3' phosphorothioate-modified primers. Zhang J; Li K Mol Biotechnol; 2003 Nov; 25(3):223-8. PubMed ID: 14668536 [TBL] [Abstract][Full Text] [Related]
4. Hybridization properties and enzymatic replication of oligonucleotides containing the photocleavable 7-nitroindole base analog. Crey-Desbiolles C; Berthet N; Kotera M; Dumy P Nucleic Acids Res; 2005; 33(5):1532-43. PubMed ID: 15767278 [TBL] [Abstract][Full Text] [Related]
5. Rare tautomer hypothesis supported by theoretical studies: ab initio investigations of prototropic tautomerism in the N-methyl-p base. Podolyan Y; Gorb L; Leszczynski J J Phys Chem A; 2005 Nov; 109(45):10445-50. PubMed ID: 16833342 [TBL] [Abstract][Full Text] [Related]
6. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays. Di Giusto D; King GC Nucleic Acids Res; 2003 Feb; 31(3):e7. PubMed ID: 12560510 [TBL] [Abstract][Full Text] [Related]
7. In vitro bypass of malondialdehyde-deoxyguanosine adducts: differential base selection during extension by the Klenow fragment of DNA polymerase I is the critical determinant of replication outcome. Hashim MF; Riggins JN; Schnetz-Boutaud N; Voehler M; Stone MP; Marnett LJ Biochemistry; 2004 Sep; 43(37):11828-35. PubMed ID: 15362868 [TBL] [Abstract][Full Text] [Related]
8. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I. Markiewicz RP; Vrtis KB; Rueda D; Romano LJ Nucleic Acids Res; 2012 Sep; 40(16):7975-84. PubMed ID: 22669904 [TBL] [Abstract][Full Text] [Related]
9. Phosphate analogs for study of DNA polymerases. Eckstein F; Thomson JB Methods Enzymol; 1995; 262():189-202. PubMed ID: 8594347 [No Abstract] [Full Text] [Related]
10. Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase alpha and Klenow fragment (DNA polymerase I). Chiaramonte M; Moore CL; Kincaid K; Kuchta RD Biochemistry; 2003 Sep; 42(35):10472-81. PubMed ID: 12950174 [TBL] [Abstract][Full Text] [Related]
11. A specific partner for abasic damage in DNA. Matray TJ; Kool ET Nature; 1999 Jun; 399(6737):704-8. PubMed ID: 10385125 [TBL] [Abstract][Full Text] [Related]
12. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment). Purohit V; Grindley ND; Joyce CM Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148 [TBL] [Abstract][Full Text] [Related]
13. Influence of 5'-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment. Bloom LB; Otto MR; Beechem JM; Goodman MF Biochemistry; 1993 Oct; 32(41):11247-58. PubMed ID: 8218190 [TBL] [Abstract][Full Text] [Related]
14. Significance of nucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex. Dzantiev L; Alekseyev YO; Morales JC; Kool ET; Romano LJ Biochemistry; 2001 Mar; 40(10):3215-21. PubMed ID: 11258938 [TBL] [Abstract][Full Text] [Related]
15. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Lam WC; Van der Schans EJ; Sowers LC; Millar DP Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of 2'-deoxy-2'-isonucleoside 5'-triphosphates (iNTPs) into DNA by A- and B-family DNA polymerases with different recognition mechanisms. Ogino T; Sato K; Matsuda A Chembiochem; 2010 Dec; 11(18):2597-605. PubMed ID: 21108267 [TBL] [Abstract][Full Text] [Related]
17. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding. Brovarets' OO; Hovorun DM J Biomol Struct Dyn; 2015; 33(1):28-55. PubMed ID: 24261751 [TBL] [Abstract][Full Text] [Related]
18. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. Zaccolo M; Williams DM; Brown DM; Gherardi E J Mol Biol; 1996 Feb; 255(4):589-603. PubMed ID: 8568899 [TBL] [Abstract][Full Text] [Related]
19. The effects of the ring fragmentation product of thymidine C5-hydrate on phosphodiesterases and klenow (exo-) fragment. Matray TJ; Haxton KJ; Greenberg MM Nucleic Acids Res; 1995 Nov; 23(22):4642-8. PubMed ID: 8524655 [TBL] [Abstract][Full Text] [Related]
20. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Frey MW; Sowers LC; Millar DP; Benkovic SJ Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]