These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12946141)

  • 1. Unprecedented selective ipso-nitration of calixarenes monitored by the O-substituents.
    Redon S; Li Y; Reinaud O
    J Org Chem; 2003 Sep; 68(18):7004-8. PubMed ID: 12946141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ipso-chlorosulfonylation of calixarenes: a powerful tool for the selective functionalization of the large rim.
    Coquière D; Cadeau H; Rondelez Y; Giorgi M; Reinaud O
    J Org Chem; 2006 May; 71(11):4059-65. PubMed ID: 16709044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,3-Alternate calix[4]arenes, selectively functionalized by amino groups.
    Danila C; Bolte M; Böhmer V
    Org Biomol Chem; 2005 Jan; 3(1):172-84. PubMed ID: 15602613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative methodologies for the N-protection of N-alkylimidazole groups: application to the first synthesis of a water-soluble calix[6]arene presenting three ammonium substituents at the large rim and three neutral N-donors at the small rim.
    Coquière D; Marrot J; Reinaud O
    Org Lett; 2007 Aug; 9(17):3271-4. PubMed ID: 17637029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and conformational study of the first triply bridged calix[6]azatubes.
    Le Gac S; Zeng X; Reinaud O; Jabin I
    J Org Chem; 2005 Feb; 70(4):1204-10. PubMed ID: 15704952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ipso-Nitration of calix[6]azacryptands: intriguing effect of the small rim capping pattern on the large rim substitution selectivity.
    Lejeune M; Picron JF; Mattiuzzi A; Lascaux A; De Cesco S; Brugnara A; Thiabaud G; Darbost U; Coquière D; Colasson B; Reinaud O; Jabin I
    J Org Chem; 2012 Apr; 77(8):3838-45. PubMed ID: 22428688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permittivity-dependent entropy driven complexation ability of cone and paco tetranitro-calix[4]arene toward para-substituted phenols.
    Kunsági-Máté S; Csók Z; Tuzi A; Kollár L
    J Phys Chem B; 2008 Sep; 112(37):11743-9. PubMed ID: 18712909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (5,11,17,23-Tetra-tert-butyl-26,28-dihydroxycalix[4]arene-25,27-dioxy)diacetic acid N,N-dimethylformamide trisolvate.
    Schlientz LM; Hagen KS
    Acta Crystallogr C; 2004 Jul; 60(Pt 7):o533-5. PubMed ID: 15237189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective hetero-trisfunctionalization of the large rim of a biomimetic calix[6]arene using host-guest chemistry as a synthetic tool.
    Colasson B; Reinaud O
    J Am Chem Soc; 2008 Nov; 130(46):15226-7. PubMed ID: 18950165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, structure, and reactions of NH-bridged calix[m]arene[n]pyridines.
    Yao B; Wang DX; Gong HY; Huang ZT; Wang MX
    J Org Chem; 2009 Aug; 74(15):5361-8. PubMed ID: 19496575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation of phenols by calix[4]arene Diethers in a low-permittivity solvent. Self-switched complexation by 25,27-Dibenzyloxycalix[4]arene.
    Kunsagi-Maté S; Szabó K; Desbat B; Bruneel JL; Bitter I; Kollar L
    J Phys Chem B; 2007 Jun; 111(25):7218-23. PubMed ID: 17547439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An induced-fit process through mechanical pivoting of aromatic walls in host-guest chemistry of calix[6]arene aza-cryptands.
    Brugnara A; Fusaro L; Luhmer M; Prangé T; Colasson B; Reinaud O
    Org Biomol Chem; 2014 May; 12(17):2754-60. PubMed ID: 24658279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent control on the selective, nonselective, and absent response of a partially substituted lower rim calix(4)arene derivative for soft metal cations (mercury(II) and silver(I)). Structural and thermodynamic studies.
    Danil de Namor AF; Chahine S; Castellano EE; Piro OE
    J Phys Chem A; 2005 Aug; 109(30):6743-51. PubMed ID: 16834028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of carcinogenic aromatic amines from aqueous solution using calix[n]arene derivatives as carrier.
    Erdemir S; Bahadir M; Yilmaz M
    J Hazard Mater; 2009 Sep; 168(2-3):1170-6. PubMed ID: 19345489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing and fixation of NO2/N2O4 by calix[4]arenes.
    Zyryanov GV; Kang Y; Rudkevich DM
    J Am Chem Soc; 2003 Mar; 125(10):2997-3007. PubMed ID: 12617667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient functionalizations of heteroatom-bridged calix[2]arene[2]triazines on the larger rim.
    Yang HB; Wang DX; Wang QQ; Wang MX
    J Org Chem; 2007 May; 72(10):3757-63. PubMed ID: 17425370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the performance of calix[8]arene derivatives as liquid phase extraction material for the removal of azo dyes.
    Gungor O; Yilmaz A; Memon S; Yilmaz M
    J Hazard Mater; 2008 Oct; 158(1):202-7. PubMed ID: 18321641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic and self-assembled calix[6]arene-based receptors for neutral molecules.
    Coquière D; Le Gac S; Darbost U; Sénèque O; Jabin I; Reinaud O
    Org Biomol Chem; 2009 Jun; 7(12):2485-500. PubMed ID: 19503918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation between aliphatic amines and chromogenic calix[4]arene derivatives studied by FT-IR spectroscopy.
    Mohammed-Ziegler I; Grün A
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):506-17. PubMed ID: 16257754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes.
    Ohira S; Wanigasekara E; Rudkevich DM; Dasgupta PK
    Talanta; 2009 Mar; 77(5):1814-20. PubMed ID: 19159804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.