These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12946271)

  • 41. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.
    Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM
    Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius.
    Mandrich L; Menchise V; Alterio V; De Simone G; Pedone C; Rossi M; Manco G
    Proteins; 2008 Jun; 71(4):1721-31. PubMed ID: 18076040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polyclonal antibody catalytic variability.
    Stephens DB; Thomas RE; Stanton JF; Iverson BL
    Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):127-34. PubMed ID: 9576860
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Similarities of hydrolytic antibodies revealed by their X-ray structures: a review.
    Charbonnier JB; Gigant B; Golinelli-Pimpaneau B; Knossow M
    Biochimie; 1997 Nov; 79(11):653-60. PubMed ID: 9479447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A general kinetic approach to investigation of active-site availability in macromolecular catalysts.
    Resmini M; Gul S; Carter S; Sonkaria S; Topham CM; Gallacher G; Brocklehurst K
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):117-25. PubMed ID: 10657247
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ester hydrolysis by a cyclodextrin dimer catalyst with a metallophenanthroline linking group.
    Zhou YH; Zhao M; Mao ZW; Ji LN
    Chemistry; 2008; 14(24):7193-201. PubMed ID: 18601233
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement.
    Mundorff EC; Hanson MA; Varvak A; Ulrich H; Schultz PG; Stevens RC
    Biochemistry; 2000 Feb; 39(4):627-32. PubMed ID: 10651626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10.
    Larsen NA; de Prada P; Deng SX; Mittal A; Braskett M; Zhu X; Wilson IA; Landry DW
    Biochemistry; 2004 Jun; 43(25):8067-76. PubMed ID: 15209502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic antibodies induced by a zwitterionic hapten.
    Tsumuraya T; Takazawa N; Tsunakawa A; Fleck R; Masamune S
    Chemistry; 2001 Sep; 7(17):3748-55. PubMed ID: 11575776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A selenium-containing catalytic antibody with Type I deiodinase activity.
    Lian G; Ding L; Chen M; Liu L; Zhao D; Ni J
    Biochem Biophys Res Commun; 2001 May; 283(5):1007-12. PubMed ID: 11355872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics and mechanism of the aminolysis of aryl ethyl chloro and chlorothio phosphates with anilines.
    Hoque ME; Dey NK; Kim CK; Lee BS; Lee HW
    Org Biomol Chem; 2007 Dec; 5(24):3944-50. PubMed ID: 18043798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A polyclonal antibody preparation with Michaelian catalytic properties.
    Gallacher G; Jackson CS; Searcey M; Badman GT; Goel R; Topham CM; Mellor GW; Brocklehurst K
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):871-81. PubMed ID: 1953683
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural convergence in the active sites of a family of catalytic antibodies.
    Charbonnier JB; Golinelli-Pimpaneau B; Gigant B; Tawfik DS; Chap R; Schindler DG; Kim SH; Green BS; Eshhar Z; Knossow M
    Science; 1997 Feb; 275(5303):1140-2. PubMed ID: 9027317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward the antibody-catalyzed chemiluminescence. Design and synthesis of hapten.
    Sawa M; Imaeda Y; Hiratake J; Fujii R; Umeshita R; Watanabe M; Kondo H; Oda J
    Bioorg Med Chem Lett; 1998 Mar; 8(6):647-52. PubMed ID: 9871576
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100.
    Eneyskaya EV; Ivanen DR; Bobrov KS; Isaeva-Ivanova LS; Shabalin KA; Savel'ev AN; Golubev AM; Kulminskaya AA
    Arch Biochem Biophys; 2007 Jan; 457(2):225-34. PubMed ID: 17145041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase.
    Khersonsky O; Tawfik DS
    Biochemistry; 2005 Apr; 44(16):6371-82. PubMed ID: 15835926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids.
    Hirschmann R; Smith AB; Taylor CM; Benkovic PA; Taylor SD; Yager KM; Sprengeler PA; Benkovic SJ
    Science; 1994 Jul; 265(5169):234-7. PubMed ID: 8023141
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic antibodies: hapten design strategies and screening methods.
    Xu Y; Yamamoto N; Janda KD
    Bioorg Med Chem; 2004 Oct; 12(20):5247-68. PubMed ID: 15388154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.