These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12946355)

  • 1. Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy.
    Wolf M; Eberhart A; Glossmann H; Striessnig J; Grigorieff N
    J Mol Biol; 2003 Sep; 332(1):171-82. PubMed ID: 12946355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular architecture of dihydropyrindine receptor/L-type Ca2+ channel complex.
    Hu H; Wang Z; Wei R; Fan G; Wang Q; Zhang K; Yin CC
    Sci Rep; 2015 Feb; 5():8370. PubMed ID: 25667046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structure of the alpha1-beta complex in the skeletal muscle dihydropyridine receptor by single-particle electron microscopy.
    Murata K; Nishimura S; Kuniyasu A; Nakayama H
    J Electron Microsc (Tokyo); 2010; 59(3):215-26. PubMed ID: 19995890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the voltage-gated calcium channel Cav1.1 complex.
    Wu J; Yan Z; Li Z; Yan C; Lu S; Dong M; Yan N
    Science; 2015 Dec; 350(6267):aad2395. PubMed ID: 26680202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into excitation-contraction coupling by electron cryomicroscopy.
    Serysheva II
    Biochemistry (Mosc); 2004 Nov; 69(11):1226-32. PubMed ID: 15627376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel.
    Szpyt J; Lorenzon N; Perez CF; Norris E; Allen PD; Beam KG; Samsó M
    J Biol Chem; 2012 Dec; 287(52):43853-61. PubMed ID: 23118233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy.
    Serysheva II; Ludtke SJ; Baker MR; Chiu W; Hamilton SL
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10370-5. PubMed ID: 12149473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling.
    Cheng W; Altafaj X; Ronjat M; Coronado R
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for conformational coupling between two calcium channels.
    Paolini C; Fessenden JD; Pessah IN; Franzini-Armstrong C
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12748-52. PubMed ID: 15310845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution.
    Wu J; Yan Z; Li Z; Qian X; Lu S; Dong M; Zhou Q; Yan N
    Nature; 2016 Sep; 537(7619):191-196. PubMed ID: 27580036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ current and charge movements in skeletal myotubes promoted by the beta-subunit of the dihydropyridine receptor in the absence of ryanodine receptor type 1.
    Ahern CA; Sheridan DC; Cheng W; Mortenson L; Nataraj P; Allen P; De Waard M; Coronado R
    Biophys J; 2003 Feb; 84(2 Pt 1):942-59. PubMed ID: 12547776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D structure of the skeletal muscle dihydropyridine receptor.
    Wang MC; Velarde G; Ford RC; Berrow NS; Dolphin AC; Kitmitto A
    J Mol Biol; 2002 Oct; 323(1):85-98. PubMed ID: 12368101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An α-helical C-terminal tail segment of the skeletal L-type Ca2+ channel β1a subunit activates ryanodine receptor type 1 via a hydrophobic surface.
    Karunasekara Y; Rebbeck RT; Weaver LM; Board PG; Dulhunty AF; Casarotto MG
    FASEB J; 2012 Dec; 26(12):5049-59. PubMed ID: 22962299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative position of RyR feet and DHPR tetrads in skeletal muscle.
    Paolini C; Protasi F; Franzini-Armstrong C
    J Mol Biol; 2004 Sep; 342(1):145-53. PubMed ID: 15313613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.
    Brillantes AM; Bezprozvannaya S; Marks AR
    Circ Res; 1994 Sep; 75(3):503-10. PubMed ID: 8062423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-induced Ca2+ release in Chinese hamster ovary (CHO) cells co-expressing dihydropyridine and ryanodine receptors.
    Suda N; Franzius D; Fleig A; Nishimura S; Bödding M; Hoth M; Takeshima H; Penner R
    J Gen Physiol; 1997 May; 109(5):619-31. PubMed ID: 9154908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessibility of targeted DHPR sites to streptavidin and functional effects of binding on EC coupling.
    Lorenzon NM; Beam KG
    J Gen Physiol; 2007 Oct; 130(4):379-88. PubMed ID: 17893191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential contribution of skeletal and cardiac II-III loop sequences to the assembly of dihydropyridine-receptor arrays in skeletal muscle.
    Takekura H; Paolini C; Franzini-Armstrong C; Kugler G; Grabner M; Flucher BE
    Mol Biol Cell; 2004 Dec; 15(12):5408-19. PubMed ID: 15385628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle.
    Protasi F; Paolini C; Nakai J; Beam KG; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Dec; 83(6):3230-44. PubMed ID: 12496092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.