BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12946896)

  • 1. Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes.
    Hua Z; Chen J; Lun S; Wang X
    Water Res; 2003 Oct; 37(17):4143-50. PubMed ID: 12946896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental applications for biosurfactants.
    Mulligan CN
    Environ Pollut; 2005 Jan; 133(2):183-98. PubMed ID: 15519450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties.
    Zeng G; Liu Z; Zhong H; Li J; Yuan X; Fu H; Ding Y; Wang J; Zhou M
    Appl Microbiol Biotechnol; 2011 May; 90(3):1155-61. PubMed ID: 21318362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses.
    Nikolopoulou M; Kalogerakis N
    Mar Pollut Bull; 2008 Nov; 56(11):1855-61. PubMed ID: 18799169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants.
    Owsianiak M; Chrzanowski Ł; Szulc A; Staniewski J; Olszanowski A; Olejnik-Schmidt AK; Heipieper HJ
    Bioresour Technol; 2009 Feb; 100(3):1497-500. PubMed ID: 18815027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Zeta-potential of n-alkane emulsion droplets and its role in substrate transport into yeast cells].
    Komarov EV; Ganin PG
    Prikl Biokhim Mikrobiol; 2004; 40(3):323-31. PubMed ID: 15283336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications.
    Coimbra CD; Rufino RD; Luna JM; Sarubbo LA
    Curr Microbiol; 2009 Mar; 58(3):245-51. PubMed ID: 19005724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.
    Owsianiak M; Szulc A; Chrzanowski Ł; Cyplik P; Bogacki M; Olejnik-Schmidt AK; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):545-53. PubMed ID: 19471922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil.
    Noparat P; Maneerat S; Saimmai A
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3949-63. PubMed ID: 24590892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry.
    Luna JM; Rufino RD; Sarubbo LA; Campos-Takaki GM
    Colloids Surf B Biointerfaces; 2013 Feb; 102():202-9. PubMed ID: 23006562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of biodegradation of oil adsorbed on fine soils in a bioslurry reactor.
    Okuda T; Alcántara-Garduño ME; Suzuki M; Matsui C; Kose T; Nishijima W; Okada M
    Chemosphere; 2007 Jun; 68(2):281-6. PubMed ID: 17300831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of Petroleum Hydrocarbons by Actinobacteria and Acinetobacteria Strains Producing Biosurfactant.
    Pidgorskyi VS; Nogina TM
    Mikrobiol Z; 2016; 78(6):92-103. PubMed ID: 30141887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces.
    Chakraborty S; Mukherji S; Mukherji S
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):101-8. PubMed ID: 20236810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.
    Montagnolli RN; Lopes PR; Bidoia ED
    Environ Monit Assess; 2015 Jan; 187(1):4116. PubMed ID: 25412888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons.
    de Carvalho CC; Wick LY; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):311-20. PubMed ID: 19096838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability.
    Das K; Mukherjee AK
    J Appl Microbiol; 2007 Jan; 102(1):195-203. PubMed ID: 17184335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria.
    McKew BA; Coulon F; Yakimov MM; Denaro R; Genovese M; Smith CJ; Osborn AM; Timmis KN; McGenity TJ
    Environ Microbiol; 2007 Jun; 9(6):1562-71. PubMed ID: 17504493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.
    Nievas ML; Commendatore MG; Esteves JL; Bucalá V
    J Hazard Mater; 2008 Jun; 154(1-3):96-104. PubMed ID: 17997031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins.
    Kaczorek E; Chrzanowski L; Pijanowska A; Olszanowski A
    Bioresour Technol; 2008 Jul; 99(10):4285-91. PubMed ID: 17959375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons.
    Mohanty S; Mukherji S
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):193-204. PubMed ID: 22089390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.