BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12946897)

  • 1. Mortality rates of autochthonous and fecal bacteria in natural aquatic ecosystems.
    Menon P; Billen G; Servais P
    Water Res; 2003 Oct; 37(17):4151-8. PubMed ID: 12946897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective grazing by protists upon enteric bacteria in an aquatic system.
    Domínguez MS; Escalante AH; Folabella AM; Zamora AS
    Rev Argent Microbiol; 2012; 44(1):43-8. PubMed ID: 22610287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide production in marine bathing waters: Implications for fecal indicator bacteria mortality.
    Clark CD; De Bruyn WJ; Jakubowski SD; Grant SB
    Mar Pollut Bull; 2008 Mar; 56(3):397-401. PubMed ID: 18062995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.
    Evanson M; Ambrose RF
    Water Res; 2006 Feb; 40(3):475-86. PubMed ID: 16386284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of heterotrophic bacteria in Lake Tanganyika (East Africa).
    Pirlot S; Unrein F; Descy JP; Servais P
    FEMS Microbiol Ecol; 2007 Dec; 62(3):354-64. PubMed ID: 17983442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification.
    McMahan L; Grunden AM; Devine AA; Sobsey MD
    Water Res; 2012 Apr; 46(6):1693-704. PubMed ID: 22244995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA.
    Fries JS; Characklis GW; Noble RT
    Water Res; 2008 Feb; 42(4-5):941-50. PubMed ID: 17945328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system.
    Jugnia LB; Sime-Ngando T; Gilbert D
    FEMS Microbiol Ecol; 2006 Oct; 58(1):23-32. PubMed ID: 16958905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of guideline faecal indicator organism values in estimation of exposure risk at recreational coastal sites.
    Craig DL; Fallowfield HJ; Cromar NJ
    Water Sci Technol; 2003; 47(3):191-8. PubMed ID: 12639028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of fecal coliform inputs to aquatic systems through soil leaching.
    George I; Anzil A; Servais P
    Water Res; 2004 Feb; 38(3):611-8. PubMed ID: 14723930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France).
    Cébron A; Garnier J
    Water Res; 2005 Dec; 39(20):4979-92. PubMed ID: 16303163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. gfp-Tagged cells as a useful tool to study the survival of Escherichia coli in the presence of the river microbial community.
    Arana I; Irizar A; Seco C; Muela A; Fernández-Astorga A; Barcina I
    Microb Ecol; 2003 Jan; 45(1):29-38. PubMed ID: 12447583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enumeration of viable E. coli in rivers and wastewaters by fluorescent in situ hybridization.
    Garcia-Armisen T; Servais P
    J Microbiol Methods; 2004 Aug; 58(2):269-79. PubMed ID: 15234525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed.
    Fremaux B; Gritzfeld J; Boa T; Yost CK
    Water Res; 2009 Nov; 43(19):4838-49. PubMed ID: 19604534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water quality and health status of the Senegal River estuary.
    Troussellier M; Got P; Bouvy M; M'Boup M; Arfi R; Lebihan F; Monfort P; Corbin D; Bernard C
    Mar Pollut Bull; 2004 May; 48(9-10):852-62. PubMed ID: 15111032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of fecal bacteria in ambient waters by experimental inputs of organic and inorganic phosphorus.
    Chudoba EA; Mallin MA; Cahoon LB; Skrabal SA
    Water Res; 2013 Jun; 47(10):3455-66. PubMed ID: 23628152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of in-stream reservoirs to reduce bacterial contamination of rural watersheds.
    Gannon VP; Duke GD; Thomas JE; Vanleeuwen J; Byrne J; Johnson D; Kienzle SW; Little J; Graham T; Selinger B
    Sci Total Environ; 2005 Sep; 348(1-3):19-31. PubMed ID: 16162311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of wetland vegetation on the survival of Escherichia coli, Salmonella typhimurium, bacteriophage MS-2 and polio virus.
    Karim MR; Glenn EP; Gerba CP
    J Water Health; 2008 Jun; 6(2):167-75. PubMed ID: 18209279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.