These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 12947612)
41. How to optimize patch testing with diphenylmethane diisocyanate. Frick-Engfeldt M; Isaksson M; Zimerson E; Bruze M Contact Dermatitis; 2007 Sep; 57(3):138-51. PubMed ID: 17680861 [TBL] [Abstract][Full Text] [Related]
42. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property. Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102 [TBL] [Abstract][Full Text] [Related]
43. Water makes it hydrophobic: contraphilic wetting for polyurethanes with soft blocks having semifluorinated and 5,5-dimethylhydantoin side chains. Makal U; Uslu N; Wynne KJ Langmuir; 2007 Jan; 23(1):209-16. PubMed ID: 17190506 [TBL] [Abstract][Full Text] [Related]
44. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes. Shahrousvand M; Mir Mohamad Sadeghi G; Salimi A J Biomater Sci Polym Ed; 2016 Dec; 27(17):1712-1728. PubMed ID: 27589493 [TBL] [Abstract][Full Text] [Related]
45. Degradation of five polyurethane gastric bubbles following in vivo use: SEC, ATR-IR and DSC studies. Dillon JG; Hughes MK Biomaterials; 1992; 13(4):240-8. PubMed ID: 1520830 [TBL] [Abstract][Full Text] [Related]
46. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content. Meng Q; Hu J; Zhu Y J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722 [TBL] [Abstract][Full Text] [Related]
47. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977 [TBL] [Abstract][Full Text] [Related]
48. FTIR and molecular mechanics studies of H-bonds in aliphatic polyurethane and polyamide-66 model molecules. Wang G; Zhang C; Guo X; Ren Z Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):407-12. PubMed ID: 17590387 [TBL] [Abstract][Full Text] [Related]
49. Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent. Archambault JG; Brash JL Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):9-16. PubMed ID: 15542334 [TBL] [Abstract][Full Text] [Related]
50. Utilizing peptidic ordering in the design of hierarchical polyurethane/ureas. Johnson JC; Wanasekara ND; Korley LT Biomacromolecules; 2012 May; 13(5):1279-86. PubMed ID: 22482877 [TBL] [Abstract][Full Text] [Related]
51. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender. Han J; Cao RW; Chen B; Ye L; Zhang AY; Zhang J; Feng ZG J Biomed Mater Res A; 2011 Mar; 96(4):705-14. PubMed ID: 21284079 [TBL] [Abstract][Full Text] [Related]
52. Synthesis and structure/properties characterizations of four polyurethane model hard segments. Jiang L; Ren Z; Zhao W; Liu W; Liu H; Zhu C R Soc Open Sci; 2018 Jul; 5(7):180536. PubMed ID: 30109100 [TBL] [Abstract][Full Text] [Related]
53. Segmented poly(esterurethane urea)s from novel urea-diol chain extenders: synthesis, characterization and in vitro biological properties. Caracciolo PC; de Queiroz AA; Higa OZ; Buffa F; Abraham GA Acta Biomater; 2008 Jul; 4(4):976-88. PubMed ID: 18359673 [TBL] [Abstract][Full Text] [Related]
54. Polyurethanes bearing pendant amino acids: fibrinogen adsorption and coagulant properties. Santerre JP; ten Hove P; Brash JL J Biomed Mater Res; 1992 Aug; 26(8):1003-18. PubMed ID: 1429753 [TBL] [Abstract][Full Text] [Related]
55. Polyurethanes with radiopaque properties. James NR; Philip J; Jayakrishnan A Biomaterials; 2006 Jan; 27(2):160-6. PubMed ID: 16026821 [TBL] [Abstract][Full Text] [Related]
56. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Delebecq E; Pascault JP; Boutevin B; Ganachaud F Chem Rev; 2013 Jan; 113(1):80-118. PubMed ID: 23082894 [No Abstract] [Full Text] [Related]
57. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
58. Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Alishiri M; Shojaei A; Abdekhodaie MJ; Yeganeh H Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():763-73. PubMed ID: 25063178 [TBL] [Abstract][Full Text] [Related]
59. Experimental FTIR and simulation studies on H-bonds of model polyurethane in solutions. I: In dimethylformamide (DMF). Zhang C; Ren Z; Yin Z; Jiang L; Fang S Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):598-603. PubMed ID: 21775195 [TBL] [Abstract][Full Text] [Related]
60. Synthesis and characterization of a sterically stabilized polyelectrolyte using isophorone diisocyanate as the coupling reagent. Shen Y; Deng J; Luo X; Zhang X; Zeng X; Feng M; Pan S J Biomater Sci Polym Ed; 2009; 20(9):1217-33. PubMed ID: 19520009 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]