BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12948055)

  • 1. Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs).
    Lehto KM; Puhakka JA; Lemmetyinen H
    Biodegradation; 2003 Aug; 14(4):249-63. PubMed ID: 12948055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons.
    Lotfabad SK; Gray MR
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of PAHs in contaminated soil by extraction with aqueous DNA followed by biodegradation with a pure culture of Sphingomonas sp.
    Navarro RR; Iimura Y; Ichikawa H; Tatsumi K
    Chemosphere; 2008 Nov; 73(9):1414-9. PubMed ID: 18814900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost.
    Kobayashi T; Murai Y; Tatsumi K; Iimura Y
    Sci Total Environ; 2009 Nov; 407(22):5805-10. PubMed ID: 19660784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors.
    Guieysse B; Viklund G
    Chemosphere; 2005 Apr; 59(3):369-76. PubMed ID: 15763089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures.
    Boonchan S; Britz ML; Stanley GA
    Appl Environ Microbiol; 2000 Mar; 66(3):1007-19. PubMed ID: 10698765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures.
    Bouchez M; Blanchet D; Bardin V; Haeseler F; Vandecasteele JP
    Biodegradation; 1999; 10(6):429-35. PubMed ID: 11068829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system.
    Tauler M; Vila J; Nieto JM; Grifoll M
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3321-36. PubMed ID: 26637425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.
    Lladó S; Jiménez N; Viñas M; Solanas AM
    Biodegradation; 2009 Sep; 20(5):593-601. PubMed ID: 19153811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium.
    López Z; Vila J; Ortega-Calvo JJ; Grifoll M
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):165-72. PubMed ID: 18074131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water.
    Qi YB; Wang CY; Lv CY; Lun ZM; Zheng CG
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28241412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of bioavailability of DNA-intercalated polycyclic aromatic hydrocarbons to Sphingomonas sp.
    Ichikawa H; Navarro RR; Iimura Y; Tatsumi K
    Chemosphere; 2010 Aug; 80(8):866-71. PubMed ID: 20646737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of anthracene and pyrene supplied by microcrystals and non-aqueous-phase liquids.
    Mutnuri S; Vasudevan N; Kaestner M
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):569-76. PubMed ID: 15729557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Bioslurry remediation of soil contaminated with polycyclic aromatic hydrocarbons].
    Gong Z; Li P; Guo S; Jing X; Wang X; Zhang H
    Huan Jing Ke Xue; 2001 Sep; 22(5):112-6. PubMed ID: 11769215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene.
    Sartoros C; Yerushalmi L; Béron P; Guiot SR
    Chemosphere; 2005 Nov; 61(7):1042-50. PubMed ID: 16197980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach.
    Arun A; Raja PP; Arthi R; Ananthi M; Kumar KS; Eyini M
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):132-42. PubMed ID: 18975143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comamonas sp. 3ah48 is a dibenz[a,h]anthracene-degrading bacterium that is tolerant to heavy metals.
    Okai M; Ohki Y; Yamamoto S; Takashio M; Ishida M; Urano N
    Lett Appl Microbiol; 2019 Jun; 68(6):589-596. PubMed ID: 30942912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils.
    Eriksson M; Sodersten E; Yu Z; Dalhammar G; Mohn WW
    Appl Environ Microbiol; 2003 Jan; 69(1):275-84. PubMed ID: 12514005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polynuclear aromatic anthracene biodegradation by psychrophilic Sphingomonas sp., cultivated with tween-80.
    Al Farraj DA; Alkufeidy RM; Alkubaisi NA; Alshammari MK
    Chemosphere; 2021 Jan; 263():128115. PubMed ID: 33297108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.