These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12948118)

  • 1. Nanofluidic networks based on surfactant membrane technology.
    Karlsson A; Karlsson M; Karlsson R; Sott K; Lundqvist A; Tokarz M; Orwar O
    Anal Chem; 2003 Jun; 75(11):2529-37. PubMed ID: 12948118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic transport in surfactant nanotube networks wired on microfabricated substrates.
    Hurtig J; Gustafsson B; Tokarz M; Orwar O
    Anal Chem; 2006 Aug; 78(15):5281-8. PubMed ID: 16878860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic nanoscale reactors and networks.
    Karlsson M; Davidson M; Karlsson R; Karlsson A; Bergenholtz J; Konkoli Z; Jesorka A; Lobovkina T; Hurtig J; Voinova M; Orwar O
    Annu Rev Phys Chem; 2004; 55():613-49. PubMed ID: 15117264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid mixing in growing microscale vesicles conjugated by surfactant nanotubes.
    Davidson M; Dommersnes P; Markström M; Joanny JF; Karlsson M; Orwar O
    J Am Chem Soc; 2005 Feb; 127(4):1251-7. PubMed ID: 15669864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of phospholipid vesicle-nanotube networks and transport of molecules therein.
    Jesorka A; Stepanyants N; Zhang H; Ortmen B; Hakonen B; Orwar O
    Nat Protoc; 2011 Jun; 6(6):791-805. PubMed ID: 21637199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct reconstitution of plasma membrane lipids and proteins in nanotube-vesicle networks.
    Bauer B; Davidson M; Orwar O
    Langmuir; 2006 Oct; 22(22):9329-32. PubMed ID: 17042549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic nanotubes: a novel platform for nanofluidics.
    Goldberger J; Fan R; Yang P
    Acc Chem Res; 2006 Apr; 39(4):239-48. PubMed ID: 16618091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chapter 15 - Complex nanotube-liposome networks.
    Jesorka A; Orwar O
    Methods Enzymol; 2009; 464():309-25. PubMed ID: 19903561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-file electrophoretic transport and counting of individual DNA molecules in surfactant nanotubes.
    Tokarz M; Akerman B; Olofsson J; Joanny JF; Dommersnes P; Orwar O
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9127-32. PubMed ID: 15961544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical tweezer action by self-tightening knots in surfactant nanotubes.
    Lobovkina T; Dommersnes P; Joanny JF; Bassereau P; Karlsson M; Orwar O
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7949-53. PubMed ID: 15141081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecularly Crowded Protocells from Reversibly Shrinking Monodisperse Liposomes.
    Deng NN; Vibhute MA; Zheng L; Zhao H; Yelleswarapu M; Huck WTS
    J Am Chem Soc; 2018 Jun; 140(24):7399-7402. PubMed ID: 29870243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.
    Jahn A; Vreeland WN; Gaitan M; Locascio LE
    J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction.
    Bozic B; Svetina S
    Eur Biophys J; 2004 Nov; 33(7):565-71. PubMed ID: 15095026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.
    Vo MD; Papavassiliou DV
    Molecules; 2016 Apr; 21(4):500. PubMed ID: 27092476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge.
    Arnold MS; Suntivich J; Stupp SI; Hersam MC
    ACS Nano; 2008 Nov; 2(11):2291-300. PubMed ID: 19206395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapter 16 - Bionanotubules formed from liposomes.
    Castillo JA; Hayes MA
    Methods Enzymol; 2009; 464():327-42. PubMed ID: 19903562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.
    Hilmer AJ; McNicholas TP; Lin S; Zhang J; Wang QH; Mendenhall JD; Song C; Heller DA; Barone PW; Blankschtein D; Strano MS
    Langmuir; 2012 Jan; 28(2):1309-21. PubMed ID: 22136192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.