These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears. Hauser R; Probst R J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169 [TBL] [Abstract][Full Text] [Related]
24. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state? Abel C; Wittekindt A; Kössl M J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155 [TBL] [Abstract][Full Text] [Related]
25. Gender effects on high frequency distortion product otoacoustic emissions in humans. Dunckley KT; Dreisbach LE Ear Hear; 2004 Dec; 25(6):554-64. PubMed ID: 15604916 [TBL] [Abstract][Full Text] [Related]
26. [Effect of contralateral noise exposure on otoacoustic distortion product emissions in man]. Richter B; Hauser R; Löhle E Laryngorhinootologie; 1995 Mar; 74(3):160-6. PubMed ID: 7755853 [TBL] [Abstract][Full Text] [Related]
27. [A study on the contralateral suppressive effects of distortion product otoacoustic emissions]. Wang H; Zhong N Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1997 Nov; 11(11):489-92. PubMed ID: 10323015 [TBL] [Abstract][Full Text] [Related]
28. Changes in distortion product otoacoustic emissions during prolonged noise exposure. Eddins AC; Zuskov M; Salvi RJ Hear Res; 1999 Jan; 127(1-2):119-28. PubMed ID: 9925023 [TBL] [Abstract][Full Text] [Related]
29. Age related changes to the dynamics of contralateral DPOAE suppression in human subjects. Konomi U; Kanotra S; James AL; Harrison RV J Otolaryngol Head Neck Surg; 2014 Jun; 43(1):15. PubMed ID: 24934087 [TBL] [Abstract][Full Text] [Related]
30. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
33. Postnatal maturation of contralateral DPOAE suppression in a precocious animal model (chinchilla) of the human neonate. Harrison RV; Konomi U; Kanotra S; James AL Acta Otolaryngol; 2013 Apr; 133(4):383-9. PubMed ID: 23373512 [TBL] [Abstract][Full Text] [Related]
34. Influence of contralateral stimulation by two-tone complexes, narrow-band and broad-band noise signals on the 2f1-f2 distortion product otoacoustic emission levels in humans. Lisowska G; Smurzynski J; Morawski K; Namyslowski G; Probst R Acta Otolaryngol; 2002 Sep; 122(6):613-9. PubMed ID: 12403123 [TBL] [Abstract][Full Text] [Related]
35. [Increased amplitude of distortion product emissions in the human caused by contralateral low intensity acoustic stimulation]. Nieschalk M; Beneking R; Stoll W HNO; 1997 May; 45(5):378-84. PubMed ID: 9265021 [TBL] [Abstract][Full Text] [Related]
36. Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control. Althen H; Wittekindt A; Gaese B; Kössl M; Abel C J Neurophysiol; 2012 Apr; 107(7):1962-9. PubMed ID: 22262828 [TBL] [Abstract][Full Text] [Related]
37. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans. Sun XM; Shaver MD Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291 [TBL] [Abstract][Full Text] [Related]
38. Adaptation of distortion product otoacoustic emission in humans. Kim DO; Dorn PA; Neely ST; Gorga MP J Assoc Res Otolaryngol; 2001 Mar; 2(1):31-40. PubMed ID: 11545148 [TBL] [Abstract][Full Text] [Related]