These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 12948609)
41. Negative Middle Ear Pressure and Composite and Component Distortion Product Otoacoustic Emissions. Thompson S; Henin S; Long GR Ear Hear; 2015; 36(6):695-704. PubMed ID: 26049553 [TBL] [Abstract][Full Text] [Related]
42. High-Frequency Distortion-Product Otoacoustic Emission Repeatability in a Patient Population. Dreisbach L; Zettner E; Chang Liu M; Meuel Fernhoff C; MacPhee I; Boothroyd A Ear Hear; 2018; 39(1):85-100. PubMed ID: 28678077 [TBL] [Abstract][Full Text] [Related]
43. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. Boege P; Janssen T J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865 [TBL] [Abstract][Full Text] [Related]
44. General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f1-f2 in the barn owl. Taschenberger G; Manley GA Hear Res; 1998 Sep; 123(1-2):183-200. PubMed ID: 9745966 [TBL] [Abstract][Full Text] [Related]
45. Effects of furosemide on distortion product otoacoustic emissions and on neuronal responses in the anteroventral cochlear nucleus. Rübsamen R; Mills DM; Rubel EW J Neurophysiol; 1995 Oct; 74(4):1628-38. PubMed ID: 8989399 [TBL] [Abstract][Full Text] [Related]
46. Estimating cochlear filter response properties from distortion product otoacoustic emission (DPOAE) phase delay measurements in normal hearing human adults. Bowman DM; Eggermont JJ; Brown DK; Kimberley BP Hear Res; 1998 May; 119(1-2):14-26. PubMed ID: 9641315 [TBL] [Abstract][Full Text] [Related]
47. Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl. Manley GA; Taschenberger G; Oeckinghaus H Hear Res; 1999 Dec; 138(1-2):1-12. PubMed ID: 10575110 [TBL] [Abstract][Full Text] [Related]
48. Exploring efferent-mediated DPOAE adaptation in three different guinea pig strains. Skjönsberg A; Halsey K; Ulfendahl M; Dolan DF Hear Res; 2007 Feb; 224(1-2):27-33. PubMed ID: 17224252 [TBL] [Abstract][Full Text] [Related]
49. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. I. Intersubject variability and consequences on the DPOAE-gram. Moulin A J Acoust Soc Am; 2000 Mar; 107(3):1460-70. PubMed ID: 10738801 [TBL] [Abstract][Full Text] [Related]
50. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study. Knight RD; Kemp DT J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654 [TBL] [Abstract][Full Text] [Related]
51. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions. Neely ST; Gorga MP; Dorn PA J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203 [TBL] [Abstract][Full Text] [Related]
52. The effect of contralateral broad-band noise on acoustic distortion products from the human ear. Williams DM; Brown AM Hear Res; 1997 Feb; 104(1-2):127-46. PubMed ID: 9119756 [TBL] [Abstract][Full Text] [Related]
53. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones. Norrix LW; Glattke TJ J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948 [TBL] [Abstract][Full Text] [Related]
54. Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. Sun XM J Acoust Soc Am; 2008 Jun; 123(6):4310-20. PubMed ID: 18537382 [TBL] [Abstract][Full Text] [Related]
55. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice. Varghese GI; Zhu X; Frisina RD Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336 [TBL] [Abstract][Full Text] [Related]
56. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736 [TBL] [Abstract][Full Text] [Related]
57. Level dependence of distortion-product otoacoustic emissions measured at high frequencies in humans. Dreisbach LE; Siegel JH J Acoust Soc Am; 2005 May; 117(5):2980-8. PubMed ID: 15957768 [TBL] [Abstract][Full Text] [Related]
58. [Contralateral modification of transitory evoked otoacoustic emissions]. Ganz M; von Specht H; Kevanishvili Z Laryngorhinootologie; 1997 May; 76(5):278-83. PubMed ID: 9280414 [TBL] [Abstract][Full Text] [Related]
59. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability. Whitehead ML; Lonsbury-Martin BL; Martin GK J Acoust Soc Am; 1992 Nov; 92(5):2662-82. PubMed ID: 1479129 [TBL] [Abstract][Full Text] [Related]
60. Contralateral suppression of distortion-product otoacoustic emissions: a potential diagnostic tool to evaluate the vestibular nerve. Chang MY; Song JJ; Kim JS; Koo JW Med Hypotheses; 2013 Nov; 81(5):830-3. PubMed ID: 24074898 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]