BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12948642)

  • 1. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum.
    Leyval D; Uy D; Delaunay S; Goergen JL; Engasser JM
    J Biotechnol; 2003 Sep; 104(1-3):241-52. PubMed ID: 12948642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16.
    Lu J; Brigham CJ; Plassmeier JK; Sinskey AJ
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):761-74. PubMed ID: 25081555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC).
    Denina I; Paegle L; Prouza M; Holátko J; Pátek M; Nesvera J; Ruklisha M
    J Ind Microbiol Biotechnol; 2010 Jul; 37(7):689-99. PubMed ID: 20364396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 138
    Liu Y; Wang X; Zhan J; Hu J
    Enzyme Microb Technol; 2019 Oct; 129():109357. PubMed ID: 31307581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.
    Elisáková V; Pátek M; Holátko J; Nesvera J; Leyval D; Goergen JL; Delaunay S
    Appl Environ Microbiol; 2005 Jan; 71(1):207-13. PubMed ID: 15640189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon.
    Keilhauer C; Eggeling L; Sahm H
    J Bacteriol; 1993 Sep; 175(17):5595-603. PubMed ID: 8366043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
    Blombach B; Hans S; Bathe B; Eikmanns BJ
    Appl Environ Microbiol; 2009 Jan; 75(2):419-27. PubMed ID: 19047397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum.
    Merkamm M; Chassagnole C; Lindley ND; Guyonvarch A
    J Biotechnol; 2003 Sep; 104(1-3):253-60. PubMed ID: 12948643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum.
    Guo Y; Han M; Xu J; Zhang W
    Protein Expr Purif; 2015 May; 109():106-12. PubMed ID: 25697867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum.
    Radmacher E; Vaitsikova A; Burger U; Krumbach K; Sahm H; Eggeling L
    Appl Environ Microbiol; 2002 May; 68(5):2246-50. PubMed ID: 11976094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valine 375 and phenylalanine 109 confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli.
    Steinmetz A; Vyazmensky M; Meyer D; Barak ZE; Golbik R; Chipman DM; Tittmann K
    Biochemistry; 2010 Jun; 49(25):5188-99. PubMed ID: 20504042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
    Holátko J; Elisáková V; Prouza M; Sobotka M; Nesvera J; Pátek M
    J Biotechnol; 2009 Feb; 139(3):203-10. PubMed ID: 19121344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium.
    Epelbaum S; Chipman DM; Barak Z
    J Bacteriol; 1996 Feb; 178(4):1187-96. PubMed ID: 8576056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production].
    Zhang H; Li Y; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1606-1619. PubMed ID: 30394028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids.
    Yu S; Zheng B; Chen Z; Huo YX
    Microb Cell Fact; 2021 Dec; 20(1):230. PubMed ID: 34952576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I.
    Belenky I; Steinmetz A; Vyazmensky M; Barak Z; Tittmann K; Chipman DM
    FEBS J; 2012 Jun; 279(11):1967-79. PubMed ID: 22443469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corynebacterium glutamicum tailored for high-yield L-valine production.
    Blombach B; Schreiner ME; Bartek T; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):471-9. PubMed ID: 18379776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum.
    McHardy AC; Tauch A; Rückert C; Pühler A; Kalinowski J
    J Biotechnol; 2003 Sep; 104(1-3):229-40. PubMed ID: 12948641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetohydroxy acid synthase and threonine deaminase activities, and the biosynthesis of isoleucine-leucine-valine in Streptococcus bovis.
    Basso AL; Ricca E; Caruso C; Ferrara L; De Felice M
    Res Microbiol; 1993 Sep; 144(7):539-45. PubMed ID: 8310179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase.
    Wada M; Hijikata N; Aoki R; Takesue N; Yokota A
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):2959-65. PubMed ID: 18997402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.