BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12949105)

  • 1. Clostridium pasteurianum F1Fo ATP synthase: operon, composition, and some properties.
    Das A; Ljungdahl LG
    J Bacteriol; 2003 Sep; 185(18):5527-35. PubMed ID: 12949105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum.
    Das A; Ljungdahl LG
    J Bacteriol; 1997 Jun; 179(11):3746-55. PubMed ID: 9171425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and expression of the atp operon coding for F1F0-ATP synthase from the antibiotic-producing actinomycete Nonomuraea sp. ATCC 39727.
    Gaballo A; Abbrescia A; Palese LL; Micelli L; di Summa R; Alifano P; Papa S
    Res Microbiol; 2006 Sep; 157(7):675-83. PubMed ID: 16545948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120.
    McCarn DF; Whitaker RA; Alam J; Vrba JM; Curtis SE
    J Bacteriol; 1988 Aug; 170(8):3448-58. PubMed ID: 2900236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum.
    Ferguson SA; Keis S; Cook GM
    J Bacteriol; 2006 Jul; 188(14):5045-54. PubMed ID: 16816177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic gram-positive bacterium Clostridium thermoautotrophicum.
    Das A; Ivey DM; Ljungdahl LG
    J Bacteriol; 1997 Mar; 179(5):1714-20. PubMed ID: 9045833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Na(+)-F(1)F(0)-ATPase operon from Acetobacterium woodii. Operon structure and presence of multiple copies of atpE which encode proteolipids of 8- and 18-kda.
    Rahlfs S; Aufurth S; Müller V
    J Biol Chem; 1999 Nov; 274(48):33999-4004. PubMed ID: 10567365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
    Keis S; Stocker A; Dimroth P; Cook GM
    J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values.
    McMillan DG; Keis S; Dimroth P; Cook GM
    J Biol Chem; 2007 Jun; 282(24):17395-404. PubMed ID: 17434874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli.
    Zhang C; Allegretti M; Vonck J; Langer JD; Marcia M; Peng G; Michel H
    Biochim Biophys Acta; 2014 Jan; 1840(1):34-40. PubMed ID: 24005236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and biochemical characterization of the F1-ATPase from Acidithiobacillus ferrooxidans NASF-1 and analysis of the atp operon.
    Wakai S; Ohmori A; Kanao T; Sugio T; Kamimura K
    Biosci Biotechnol Biochem; 2005 Oct; 69(10):1884-91. PubMed ID: 16244438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation of the hypoxia-induced protein kinase Cdelta interaction with the 'd' subunit of F1Fo-ATP synthase in neonatal cardiac myocytes: implications for energy preservation and survival.
    Nguyen TT; Ogbi M; Yu Q; Johnson JA
    Biochem J; 2010 Jul; 429(2):335-45. PubMed ID: 20578995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules.
    Niu Y; Moghimyfiroozabad S; Safaie S; Yang Y; Jonas EA; Alavian KN
    J Mol Evol; 2017 Dec; 85(5-6):219-233. PubMed ID: 29177973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and subunit arrangement of Mycobacterial F
    Kamariah N; Huber RG; Nartey W; Bhushan S; Bond PJ; Grüber G
    J Struct Biol; 2019 Aug; 207(2):199-208. PubMed ID: 31132404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological and functional study of subunit h of the F1Fo ATP synthase complex in yeast Saccharomyces cerevisiae.
    Fronzes R; Chaignepain S; Bathany K; Giraud MF; Arselin G; Schmitter JM; Dautant A; Velours J; Brèthes D
    Biochemistry; 2003 Oct; 42(41):12038-49. PubMed ID: 14556635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unidirectional regulation of the F
    Zarco-Zavala M; Mendoza-Hoffmann F; García-Trejo JJ
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):762-774. PubMed ID: 29886048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Drugs Targeting the c-Ring of the F1FO-ATP Synthase.
    Pagliarani A; Nesci S; Ventrella V
    Mini Rev Med Chem; 2016; 16(10):815-24. PubMed ID: 26864551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large ATP synthase operon of the red alga Antithamnion sp. resembles the corresponding operon in cyanobacteria.
    Kostrzewa M; Zetsche K
    J Mol Biol; 1992 Oct; 227(3):961-70. PubMed ID: 1404401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha.
    Senior AE; Muharemagić A; Wilke-Mounts S
    Biochemistry; 2006 Dec; 45(51):15893-902. PubMed ID: 17176112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial permeability transition involves dissociation of F
    Bonora M; Morganti C; Morciano G; Pedriali G; Lebiedzinska-Arciszewska M; Aquila G; Giorgi C; Rizzo P; Campo G; Ferrari R; Kroemer G; Wieckowski MR; Galluzzi L; Pinton P
    EMBO Rep; 2017 Jul; 18(7):1077-1089. PubMed ID: 28566520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.