These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12949161)

  • 1. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis.
    Inácio JM; Costa C; de Sá-Nogueira I
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2345-2355. PubMed ID: 12949161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping.
    Mota LJ; Sarmento LM; de Sá-Nogueira I
    J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions.
    Kuge T; Teramoto H; Inui M
    J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression.
    Sa-Nogueira I; Nogueira TV; Soares S; de Lencastre H
    Microbiology (Reading); 1997 Mar; 143 ( Pt 3)():957-969. PubMed ID: 9084180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Environ Microbiol; 2009 Jun; 75(11):3419-29. PubMed ID: 19346355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis.
    Raposo MP; Inácio JM; Mota LJ; de Sá-Nogueira I
    J Bacteriol; 2004 Mar; 186(5):1287-96. PubMed ID: 14973026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.
    Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K
    BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon.
    Miwa Y; Fujita Y
    J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite repression of the Bacillus subtilis FadR regulon, which is involved in fatty acid catabolism.
    Tojo S; Satomura T; Matsuoka H; Hirooka K; Fujita Y
    J Bacteriol; 2011 May; 193(10):2388-95. PubMed ID: 21398533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X; Galinier A; Saxild HH
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2901-2908. PubMed ID: 11065368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis.
    Choi SK; Saier MH
    J Mol Microbiol Biotechnol; 2005; 10(1):40-50. PubMed ID: 16491025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. trans-Acting factors and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis.
    Inácio JM; de Sá-Nogueira I
    J Bacteriol; 2007 Nov; 189(22):8371-6. PubMed ID: 17827291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.