BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12949183)

  • 1. N-acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans.
    Biswas S; Roy M; Datta A
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2597-2608. PubMed ID: 12949183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing.
    Kraidlova L; Van Zeebroeck G; Van Dijck P; Sychrová H
    Eukaryot Cell; 2011 Sep; 10(9):1219-29. PubMed ID: 21764911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans.
    Biswas K; Morschhäuser J
    Mol Microbiol; 2005 May; 56(3):649-69. PubMed ID: 15819622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae.
    Donaton MC; Holsbeeks I; Lagatie O; Van Zeebroeck G; Crauwels M; Winderickx J; Thevelein JM
    Mol Microbiol; 2003 Nov; 50(3):911-29. PubMed ID: 14617151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins.
    Bailey DA; Feldmann PJ; Bovey M; Gow NA; Brown AJ
    J Bacteriol; 1996 Sep; 178(18):5353-60. PubMed ID: 8808922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in
    Naseem S; Min K; Spitzer D; Gardin J; Konopka JB
    Genetics; 2017 May; 206(1):299-314. PubMed ID: 28348062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gln3 is a main regulator of nitrogen assimilation in Candida glabrata.
    Pérez-Delos Santos FJ; Riego-Ruiz L
    Microbiology (Reading); 2016 Aug; 162(8):1490-1499. PubMed ID: 27222014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae.
    Didion T; Grauslund M; Kielland-Brandt MC; Andersen HA
    J Bacteriol; 1996 Apr; 178(7):2025-9. PubMed ID: 8606179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of the GFA1 gene encoding the glutamine:fructose-6-phosphate amidotransferase of Candida albicans.
    Smith RJ; Milewski S; Brown AJ; Gooday GW
    J Bacteriol; 1996 Apr; 178(8):2320-7. PubMed ID: 8636033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis.
    Lew SQ; Lin CH
    Curr Genet; 2021 Apr; 67(2):249-254. PubMed ID: 33388851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ssn6, an important factor of morphological conversion and virulence in Candida albicans.
    Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO
    Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Analysis of
    Min K; Biermann A; Hogan DA; Konopka JB
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30463924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetylglucosamine kinase, HXK1 is involved in morphogenetic transition and metabolic gene expression in Candida albicans.
    Rao KH; Ghosh S; Natarajan K; Datta A
    PLoS One; 2013; 8(1):e53638. PubMed ID: 23341961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus.
    Gresham D; Usaite R; Germann SM; Lisby M; Botstein D; Regenberg B
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18551-6. PubMed ID: 20937885
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Garbe E; Miramón P; Gerwien F; Ueberschaar N; Hansske-Braun L; Brandt P; Böttcher B; Lorenz M; Vylkova S
    mBio; 2022 Feb; 13(1):e0314221. PubMed ID: 35073760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae.
    Rademacher F; Kehren V; Stoldt VR; Ernst JF
    Microbiology (Reading); 1998 Nov; 144 ( Pt 11)():2951-2960. PubMed ID: 9846730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes.
    Wendland J; Schaub Y; Walther A
    Appl Environ Microbiol; 2009 Sep; 75(18):5840-5. PubMed ID: 19648376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.
    Liu H; Köhler J; Fink GR
    Science; 1994 Dec; 266(5191):1723-6. PubMed ID: 7992058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans.
    Alvarez FJ; Konopka JB
    Mol Biol Cell; 2007 Mar; 18(3):965-75. PubMed ID: 17192409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans.
    Tripathi G; Wiltshire C; Macaskill S; Tournu H; Budge S; Brown AJ
    EMBO J; 2002 Oct; 21(20):5448-56. PubMed ID: 12374745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.